Relations and Functions - Revision Notes

 CBSE Class 12 Mathematics

Chapter-01
Relation and Function


TYPES OF RELATIONS:

  • Empty Relation: It is the relation R in X given by R = ϕ X×X.
  • Universal Relation: It is the relation R in X given by R = X×X.
  • Reflexive Relation: A relation R in a set A is called reflexive if (a, a) ∈ R for every a ∈ A.
  • Symmetric Relation: A relation R in a set A is called symmetric if () ∈ R implies that () ∈ R, for all  ∈
  • Transitive Relation: A relation R in a set A is called transitive if () ∈ R, and () ∈ R together imply that all  ∈ A.
  • EQUIVALENCE RELATION : A relation R in a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.
  • Equivalence Classes: Every arbitrary equivalence relation R in a set X divides X into mutually disjoint subsets (Ai) called partitions or subdivisions of X satisfying the following conditions:

All elements of Ai are related to each other for all i.
No element of Ai is related to any element of Aj whenever i ≠ j 

·   . These subsets () are called equivalence classes.

·   For an equivalence relation in a set X, the equivalence class containing a ∈ X, denoted by [a], is the subset of X containing all elements b related to a.

**Function: A relation f: A B is said to be a function if every clement of A is correlated to a

Unique element in B.

*A is domain

* B is codomain

  • function f : X  Y is one-one (or injective), if f(x1)=f(x2)  x1=x2,  x1,x2X.
  • function f : X  Y is onto (or surjective), if yY, xX such that f(x)=y.
  •  A function f : X  Y is one-one-onto (or bijective), if f is both one-one and onto.
  • The composition of function f : A  B and g : B  C is the function gof:AC given by gof(x)=g(f(x)), xA.
  • function f : X  Y is invertible, if g:YX such that  gof=Ix and fog=Iy.
  • function f : X  Y is invertible, if and only if f is one-one and onto.
  • Given a finite set X, a function f : X  X is one-one (respectively onto) if and only if f is onto (respectively one-one). This is the characteristics property of a finite set. This is not true for infinite set.
  • A binary function * on A is a function * from A x A to A.
  • An element eX is the identity element for binary operation * : X×XX, if ae=a=ea aX.
  • An element eX is invertibel for binary operation * : X×XX if there exists bX such that abeba, where e is the binary identity for the binary operation *. The element b is called the inverse of a and is denoted by a1.
  • An operation * on X is commutative, if ab=ba, a,b in X.
  • An operation * on X is associative, if (ab)c=a(bc), a,b,c in X.