Application of Derivatives - Test Papers

 CBSE Test Paper 01

Chapter 6 Application of Derivatives


  1. The instantaneous rate of change at t = 1 for the function f (t) =te-t + 9 is 

    1. 2
    2. 9
    3. -1
    4. -0
  2. The function f (x) = x2, for all real x, is 

    1. Neither decreasing nor increasing
    2. Increasing
    3. Decreasing
    4. None of these
  3. The slope of the tangent to the curve x = a sint, y = a {cost+log(tant2)} at the point ‘t’ is 

    1. tant2
    2. none of these
    3. tan t
    4. cot t
  4. The function f (x) = x2 - 2x is strict decreasing in the interval 

    1. none of these
    2. R
    3. [1,)
    4. ( , 1)
  5. The equation of the tangent to the curve y2 = 4ax at the point (at2, 2at) is 

    1. ty = x + at2
    2. none of these
    3. tx + y =at3
    4. ty = x - at2
  6. The maximum value of (1x)x is ________.
  7. The minimum value of f if f(x) = sin x in [π2,π2] is ________.
  8. The equation of normal to the curve y = tan x at (0, 0) is ________.
  9. Find the approximate value of f(3.02) where f(x) = 3x2 + 5x + 3. 

  10. If the line ax+by+c=0 is a normal to the curve xy=1,then show that either a>0,b<0 or a<0,b>0 

  11. Find the interval in which the function f(x) = x2e-x is increasing. 

  12. The volume of a sphere is increasing at the rate of 3 cubic centimeter per second. Find the rate of increase of its surface area, when the radius is 2 cm. 

  13. Find the approximate value of (1.999)5

  14. Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R. 

  15. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a is 2a3

  16. A particle moves along the curve 6y = x3 + 2. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x – coordinate. 

  17. Find the equation of tangent to the curve y=x7x25x+6 at the point, where it cuts the X-axis. 

  18. Show that semi – vertical angle of right circular cone of given surface area and maximum volume is sin1(13)

CBSE Test Paper 01
Chapter 6 Application of Derivatives


Solution

  1. (d) 0, Explanation: f(t)=tet(1)+etf(1)=e1+e1=0
  2. (a) Neither decreasing nor increasing, Explanation: f(x) = x2
     f'(x) = 2x for all x in R.
    Since f ‘(x) = 2x > 0 for x >0, and f ‘ (x) = 2x< 0 for x < 0, therefore on R, f is neither increasing nor decreasing. Infact , f is strict increasing on [ 0, ) and strict decreasing on (- ,0].
  3. (d) cot t, Explanation: Given, x=asint,y=a{cost+log(tant2)}
    dxdt=acost,dydt=a[sint+1tant2.sec2t2.12]=a[sint+12sint2.cost2]=a[sint+1sint]=acos2tsint
    Slope of the tangent=dydx=dydtdxdt=acos2tsintacost=cott
  4. (d) ( , 1)Explanation: f ‘ (x ) = 2x – 2 = 2 ( x - 1) <0 if x < 1 i.e. x x(,1). Hence f is strict decreasing in(,1)
  5. (a) ty = x +at2Explanation: y2=4ax
    2ydydx=4a
    dydx=2ay
    dydx at (at2,2at) is 2a2at=1t
     Slope of tangent =m=1t
    Hence, equation of tangent is yy1=m(xx1)
    y2at=1t(xat2)
    yt2at2=xat2
    yt=x+at2
  6. e1e
  7. -1
  8. x + y = 0
  9. x=3,Δx=0.02
    f(x+Δx)=f(x)+f(x)Δx
    f(x+Δx)=(3x2+5x+3)+(6x+5)×0.02
    Put x=3,Δx=0.02
    f(3.02)={3(9)+5(3)+3}+{6(3)+5}×0.02 =45+0.46
    f(3.02) = 45.46
  10. we have, xy =1
    y=1x
     dydx=1x2
    The slope of the normal = x2
    If ax+by+c=0 is normal to the curve xy=1,then
    x2=ab [slope of normal =coeff. of xcoeff.of y]
    ab>0
     a>0,b<0 or a<0,b>0
  11. f(x) = x2e-x
    Differentiating w.r.t x, we get,
    f'(x) = x2ex+2xex=xex(2x)
    For increasing function, f'(x)0
    xex(2x)0
    x(2x)0 [ ex is always positive]
    x(x2)0 [ since - ( x - 2) will change the inequality )
    Here x < 0 & (x - 2) > 0  x < 0 & x > 2  0 < x < 2
    But when x > 0 & (x - 2) < 0  x > 0 & x < 2
    0x 2
  12. Let r be the radius of sphere and V be its volume.
    Then V = 43πr3........(i)
    Given, dVdt = 3 cm3/s
    Differentiating (i) both sides w.r.t x,we get,
    dVdt=43π(3r2)drdt
    3=43(3πr2)drdt
    drdt=34πr2.......(ii)
    Now, let S be the surface area of sphere, then S = 4πr2
    dSdt=4π(2r)drdt
    dSdt=8πr(34πr2)[using Eq.(ii)]
    (dSdt)=6r
    when r = 2, then dSdt=62 = 3 cm2/s
    Therefore,the rate of inrcrease of the surface area of sphere is 3 cm2/s when it's radius is 2 cm
  13. Let x = 2
    and Δx=0.001[20.001=1.999]
    let y = x5
    On differentiating both sides w.r.t. x, we get
    dydx=5x4
    Now, Δy=dydx.Δx=5x4×Δx
    =5×24×[0.001]
    =80×0.001=0.080
    (1.999)5=y+Δy
    =25+(0.080)
    = 32 - 0.080 = 31.920
  14. Here, f(x) =4x3 - 18x2 + 27x - 7
    On differentiating both sides w.r.t. x, we get
    f'(x) = 12x2 - 36x + 27
    f'(x) = 3(4x2 -12 + 9)
     f'(x) = 3(x - 3)2
     f'(x)  0
    Since, a perfect square number cannot be negative]
     Given function f(x) is an increasing function on R.

  15. v=πr2.2x[OL=xLM=2x]
    =π.(a2x2).2x
    V=2π(a2xx3)
    dvdx=2π(a23x2)
    d2vdx2=2π[06x]
    =12πx
    For maximum/minimum
    dvdx=0
    2π[a23x2]=0
    a2=3x2a23=x
    x=a3
    d2vdx2]x=a3=12π.a3
    = - tive maximum
    Volume is maximum at x=a3
    Height of cylinder of maximum volume is
    = 2x
    =2×a3
    =2a3
  16. Given curve is 6y = x3 + 2 ...(i)
    so, 6dydt=3x2dxdt
    6×8dxdt=3x2dxdt[dydt=8dxdt]
    16=x2
    x=±4
    Put the value of x in equation (1)
    When x = 4
    6y = ( 4 )3 + 2
     6y = 64 + 2
     6y = 66
     y=666=11
    So, point is (4, 11)
    Now, When x = - 4
    6y = ( - 4}3 + 2
    = - 64 + 2
     y=626=313
    So the point is (4,313)
  17. Given equation of curve is
    y=x7x25x+6.......(i)
    On differentiating both sides w.r.t. x, we get
    dydx=(x25x+6)1(x7)(2x5)(x25x+6)2[ddx(uv)=vdudxudvdxv2]
    dydx=[(x25x+6)y(x25x+6)(2x+5)](x25x+6)2
    dydx=1(2x5)yx25x+6[dividing numerator and denominator by x2 - 5x + 6]
    Also, given that curve cuts X-axis, so its y-coordinate is zero.
    Put y = 0 in Eq. (i), we get
    x7x25x+6=0
     x= 7
    So, curve passes through the point (7, 0).
    Now, slope of tangent at (7,0) is
    m=(dydx)(2,0)=104935+6=120
    Hence, the required equation of tangent passing through the point (7, 0) having slope 1/20 is
    y - 0 = 120(x - 7)
     20y = x - 7
     x - 20y = 7

  18. s=πr2+πrl (given)
    l=sπr2πr
    Let v be the volume
    v=13πr2h
    v2=19π2r4h2[h2=l2r2]
    v2=19π2r4(l2r2)
    v2=19π2r4[(sπr2πr)2r2]
    =19π2r4[(sπr2)2π2r2r21]
    =19r2[(sπr2)2π2r4]
    =19r2[s2+π2r42sπr2π2r4]
    =19r2[s22sπr2]
    z=19[s2r22sπr4]
    [v2=z]
    Now dzdr=19[2rs28sπr3]
    0=19[2rs28sπr3]
    8sπr2=2rs2
     4πr2=s
    Now d2zdx2=19[2s224sπr2]
    d2zdx2]r2=s4π=19[25224π.54π]
    = + ve
    Hence minimum
    Now s=4πr2
    We have s=πrl+πr2
    4πr2=πrl+πr2
     3πr2=πrl
     3 r = l
     rl=13
     sinα=13