Application of Integrals - Test Papers

             CBSE Test Paper 01

Chapter 8 Application of Integrals


  1. The area bounded by the curves y2=20x and x2=16y is equal to

    1. 3203 sq. units
    2. 80π sq. units
    3. none of these
    4. 100π sq. units
  2. The area of the region bounded by the parabola ( y - 2)2 = x - 1, the tangent to the parabola at the point ( 2 , 3 ) and the x – axis is equal to 

    1. none of these
    2. 6 sq. units
    3. 9 sq. units
    4. 12 sq. units
  3. The area bounded by the curves y=x, 2y + 3 = xand the x – axis in the first quadrant is 

    1. 36
    2. 18
    3. 9
    4. none of these
  4. If the area cut off from a parabola by any double ordinate is k times the corresponding rectangle contained by that double ordinate and its distance from the vertex, then k is equal to 

    1. 23
    2. 3
    3. 13
    4. 32
  5. The area bounded by the curves y = cos x and y = sin x between the ordinates x = 0 and x=π2is equal to 

    1. 2(2+1) sq. units
    2. 2(21) sq. units
    3. (421) sq. units
    4. (42+1) sq. units
  6. The area of the bounded by the lines y = 2, x = 1, x = a and the curve y = f(x), which cuts the last two lines above the first line for all a1, is equal to 23[(2a)3/23a+322]. Find f(x) 

  7. Let f(x) be a continuous function such that the area bounded by the curve y=f(x), x-axis and the lines x=0 and x=a is a22+a2sin a+π2 cos a, then find f(π2)

  8. Find the area of the region enclosed by the curves y = x , x = e, y = 1x and the positive x-axis. 

  9. Calculate the area of the region enclosed between the circles: x2 + y2 = 16 and (x + 4)2 + y2 = 16. 

  10. Using integration, find the area of region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2). 

  11. Find the area of the region {(x,y);x2yx}

  12. Evaluate limx(xxx!)1/x

  13. Evaluate limx[1x+x2(x+1)3+x2(x+2)3+.........+18x]

  14. Find the area of the region enclosed by the parabola x2= y and the line y=x + 2. 

  15. Using integration, find the area of the region enclosed between the two circles x2 + y2 = 4 and (x - 2)2 + y2 = 4. 

CBSE Test Paper 01
Chapter 8 Application of Integrals


Solution

  1. (a) 3203 sq. units
    Explanation: Eliminating y, we get: x4=256×20x
    x=0,x=8(10)13
    Required area:
    =08(10)13(20xx216)dx
    =64033203=3203 sq units
  2. (c) 9 sq. units
    Explanation: Given parabola is: (y2)2=x1dydx=12(y2)
    When y= 3, x= 2
    dydx=12
    Therefore, tangent at ( 2, 3 ) is y – 3 = ½ ( x – 2 ). i.e. x – 2y +4 = 0 . therefore required area is: 03(y2)2+1.dy03(2y4)dy=[(y2)33+y]03[y24y]03=9
  3. (c) 9
    Explanation: Required area: 09xdx39(x32)dx=[x323/2]0912[x223x]39=9sq.units
  4. (a) 23
    Explanation: Required area: 20a4axdx
    =kα(24aα)
    =8a3α32
    =4akα32k=23
  5. (b) 2(21)sq. units
    Explanation: Required area = 0π2|sinxcosx|dx
    =0π4(cosxsinx)dx+π4π2(sinxcosx)dx
    =[sinx+cosx]0π4+[cosxsinx]π4π2
    =12+12(0+1){1(12+12)}
    =422=222=2(21)
  6. we are given,
    a1[f(x)2]dx=23[(2a)3/23a+322]
    Differentiating w.r.t a, we get
    f(a) - 2 =23[322a.23]
    f(a)= 22a,a1
     f(x)=22x,x1
  7. we have, 0af(x)dx=a22+a2sin a+π2cos a
    Differentiating w.r.t a,we get,
    f(a)=a+ 12(sin a+acos a)π2sin a
    put a=π2, f(π2)=π2+12π2=12
  8. We have y=4x2 and y=19x2

    Required area =202(3yy2)dy
    =2(5y2y3/2)02
    =2.5322=2023

  9. x2 + y2 = 16
    (x + 4)2 + y2 = 16
    Intersecting at x = -2
    Area=44216x2dx
    =4[4242x2dx] =4[x21x2+422sin1x4]42 =4[(234π3)(4π)]
    =(83+32π3)

  10. A (-1, 0) B (1, 3) C (3, 2)
    Equation of AB
    yy1=y2y1x2x1(xx1)
    y0=301+1(x+1)
    y=32(x+1)
    Similarly,
    Equation of BC y=12(x7)
    Equation of AC =12(x+1)
    Area ΔABC=1132(x+1)dx+1312(x7)dx 1312(x+1)dx
    =32[x22+x]11+12[7xx22]13[x22+x]13
    =32[(12+1)(121)]+12[(2192)(712]
    12[(92+3)(121)]
    =32(2)+12(10)12(8)=3+54
    = 4 sq. units
  11. y = x2

    y = x
     x = 0, y = 0
    x = 1, y = 1
    Area =01xdx01x2dx
    =01(xx2)dx
    =[x22x33]01
    =1213
    =16 sq. units
  12. Given L=limx(xxx!)1/x
    Taking logarithm on both sides
    log L=limx1x(logx1+logx2+.....+logxx)
    limx1xr=1xlog xr
    =limx1xr=1xlog 1(r/x)
    =01log1x dx
    =01log x dx
    =[xlog x+x]01
    =[(1log 1+1)(0log00)] = 1
     Log L=1 
    L=e
    limx(xxx!)1/x=e
  13. Given, limx[1x+x2(x+1)3+x2(x+2)3+.........+18x]
    =limxr=0xx2(x+r)3
    =limxr=0x1/x(1+r/x)2
    =01dy(1+y)3, replace  rx by y and 1x by dy
    =[12(1+y)2]01
    =[12(1+12)12(1+02)]
    =[12(2)12(1)]
    =[1412] =14
  14. We have, x2 = y and y = x + 2
    x2=x+2
    x2x2=0
    x22x+x2=0
    x(x2)+1(x2)=0
    (x+1)(x2)=0
    x=1,2

     Required area of shaded region, =12(x+2x2)dx=[x22+2xx33]12
    =(8312)=92
  15. Given circles are x2+y2=4...(i)
    (x2)2+y2=4...(ii)
    Eq. (i) is a circle with centre origin and
    Radius = 2.
    Eq. (ii) is a circle with centre C (2, 0) and
    Radius = 2.
    On solving Eqs. (i) and (ii), we get
    (x2)2+y2=x2+y2
    x2 - 4x+4+y2=x2+y2
    x=1
    On putting x = 1 in Eq. (i), we get
    y=±3
    Thus, the points of intersection of the given circles are A (1, 3) and A'(1,-3).

    Clearly, required area= Area of the enclosed region OACA'O between circles
    = 2 [ Area of the region ODCAO]
    =2 [Area of the region ODAO + Area of the region DCAD]
    =2[01y2dx+12y1dx]
    =2[014(x2)2dx+124x2dx]
    =2[12(x2)4(x2)2+12×4sin1(x22)]01+2[12x4x2+12×4sin1x2]12
    =[(x2)4(x2)2+4sin1(x22)]01+[x4x2+4sin1x2]12
    =[{3+4sin1(12)}04sin1(1)]+[0+4sin1134sin112]
    =[(34×π6)+4×π2]+[4×π234×π6]
    =(32π3+2π)+(2π32π3)
    =8π323 sq units.