Continuity and Differentiability - Test Papers

 CBSE Test Paper 01

Chapter 5 Continuity and Differentiability


  1. Let f (x + y) = f(x) + f(y)  x, y R. Suppose that f (6) = 5 and f ‘ (0) = 1, then f ‘ (6) is equal to 

    1. 1
    2. 30
    3. None of these
    4. 25
  2. Derivative of log|x| w.r.t. |x| is 

    1. None of these
    2. 1x
    3. ±1x
    4. 1|x|
  3. The function f (x) = 1 + |sin x| is 

    1. differentiable everywhere
    2. continuous everywhere
    3. differentiable nowhere
    4. continuous nowhere
  4. Ltx01cosxxsinx is equal to 

    1. 1
    2. 2
    3. 0
    4. 12
  5. Ltxπ/4cosxsinxxπ4 is equal to 

    1. 22
    2. -1
    3. 12
    4. 22
  6. The value of c in Mean value theorem for the function f(x) = x(x - 2), x [1, 2] is ________.
  7. The set of points where the function f given by f(x) = |2x - 1| sin x is differentiable is ________.
  8. Differential coefficient of sec (tan-1x) w.r.t. x is ________.
  9. Discuss the continuity of the function f(x)=sinx.cosx

  10. Determine the value of 'k' for which the following function is continuous at x = 3 : f(x) = {(x+3)236x3,x3k,x=3

  11. Determine the value of the constant 'k' so that the function f(x) = {kx|x|, if x<03, if x0 is continuous at x= 0. 

  12. Find dydx, y=cos1(1x21+x2),0<x<1 

  13. Show that the function defined by f(x)=cos(x2) is a continuous function. 

  14. Determine if f defined by f(x)={x2sin1x,ifx00,ifx=0 is a continuous function. 

  15. Find the value of k so that the following function is continuous at x = 2.
    f(x) = {x3+x216x+20(x2)2,x2k,x=2}

  16. If xy + yx = ab, then find dydx

  17. If ey(x + 1) = 1, then show that d2ydx2=(dydx)2

  18. Find dydx if yx+xy+xx=ab.

CBSE Test Paper 01
Chapter 5 Continuity and Differentiability


Solution

    1. 1
      Explanation: f(6)=limh0f(6+h)f(6)h = limh0f(6+h)f(6+0)h
      =limh0f(6)+f(h){f(6)+f(0)}h
      =limh0f(h)f(0)h=f(0)=1
    1. 1|x|
      Explanation: dd|x|(log|x|)=1|x|
    1. continuous everywhere
      Explanation: f(x) = 1 + |sinx| is not derivable at those x for which x for which sinx = 0, however, 1 + |sinx| is continuous everywhere (being the sum of two continuous functions)
    1. 12
      Explanation: limx01cosxxsinx=limx01cos2xxsinx(1+cosx)limx0sinxx.11+cosx=1.11+1=12
    1. 22
      Explanation: limxπ4cosxsinxxπ4 =limxπ4sinxcosx1=sinπ4cosπ4=22=2
  1. 32
  2. R - {12}
  3. x1+x2
  4. Since sin x and cos x are continuous functions and product of two continuous function is a continuous function, therefore f(x)=sinx.cosx is a continuous function.
  5. Given, f(x) = {(x+3)236x3,x3x,x=3
    We shall use definition of continuity to find the value of k.
    If f(x) is continuous at x = 3,
    Then, we have limx3f(x)=f(3)
    limx3(x+3)236x3=k
    limx3(x+3)262x3=k
    limx3(x+36)(x+3+6)x3=k [  a2 - b2 = (a - b)(a + b)]
    limx3(x3)(x+9)(x3)=k
    limx3(x+9)=k
     3 + 9 = k  k = 12
  6. Let f(x) ={kx|x|, if x<03, if x0 be continuous at x = 0
    Then,limx0+f(x)=limx0f(x)=f(0)
    limh0f(0+h)=limh0f(0h)=f(0)
    3=limh0k(h)|h|=3
    limh0(khh)=3
    limh0(k)=3
     k = - 3
  7. Given: y=cos1(1x21+x2),0<x<1
    Putting x=tanθ
    y=cos1(1tan2θ1+tan2θ)
    =cos1(cos2θ)=2θ=2tan1x
    dydx=2.11+x2=21+x2
  8. Let f(x)=x2 and g(x)=cosx, then
    (gof)(x)=g[f(x)]=g(x2)=cosx2
    Now f and g being continuous it follows that their composite (gof) is continuous.
    Hence cosx2 is continuous function.
  9. Here, limx0f(x)=limx0x2sin1x=0 x a finite quantity = 0
    [sin1xlies between - 1 and 1]
    Also f(0) = 0
    Since, limx0f(x)=f(0) therefore, the function f is continuous at x = 0.
    Also,when x0 ,then f(x) is the product of two continuous functions and hence Continuous.Hence,f(x) is continuous everywhere.
  10. According to the question, f(x) = {x3+x216x+20(x2)2,x2k,x=2} is continuous at x=2.
    Now, we have f(2) = k
    limx2f(x)=limx2x3+x216x+20(x2)2
    =limx2(x2)(x2+3x10)(x2)2
    =limx2(x2)(x+5)(x2)(x2)2
    =limx2(x+5) = 2+ 5 = 7
    f(x) is continuous at x = 2.
    limx2f(x)= f(2)  7 = kk = 7
  11. We have, xy + yx = ab.........(i)
    Let xy = v and yx = u......(ii)
    Therefore,on putting these values in Eq. (i), we get,
    v + u = ab
    Therefore,on differentiating both sides w.r.t. x, we get,
    dvdx+dudx=0........(iii)
    Now consider, xy = v [ from Eq.(ii)]
    Therefore,on taking log both sides, we get,
    log xy = logv
     y log x = log v
    Therefore,on differentiating both sides w.r.t. x, we get,
    y1x+logxdydx=1vdvdx
    v(yx+logxdydx)=dvdx
    dvdx=xy(yx+logxdydx).........(iv) [ From Eq.(ii)]
    Also, yx = u [From Eq(ii)]
    Therefore,on taking log both sides, we get,
    log yx = log u  x log y = log u
    Therefore,on differentiating both sides w.r.t. 'x', we get,
    x1ydydx+1logy=1ududx
    xydydx+logy=1ududx
    u[xydydx+logy]=dydx
    yx[xydydx+logy]=dudx........(v) [ From Eq(ii)]
    Therefore,on substituting the values of dvdx and dudx from Eqs. (iv) and (v) respectively in Eq. (iii), we get
    xy(yx+logxdydx)+yx(xydydx+logy)=0
    xyyx+xylogxdydx+yxxydydx+yxlogy=0
    xylogxdydx+yxxydydx=xyyxyxlogy
    dydx[xylogx+yxxy]=xyyxyxlogy
    dydx=xy1yyxlogyxylogx+yx1x
  12. According to the question, ey(x+1)=1
    Taking log both sides,
    log[ey(x+1)]=log1
    logey+log(x+1)=log1
     y+log(x+1)=log1 [ log ey = y]
    differentiating both sides w.r.t. x,
    dydx+1x+1=0.........(i)
    Differentiating both sides w.r.t. 'x',
    d2ydx21(x+1)2=0
    d2ydx2(dydx)2=0 [ From Equation(i)]
    d2ydx2(dydx)2=0
    d2ydx2=(dydx)2
  13. Let u=yx,v=xy,w=xx
    u+v+w=ab
    Therefore dudx+dwdx+dvdx=0 ....(1)
    u=yx
    Taking log both side
    logu=logyx
    logu=x.logy
    Differentiate both side w.r.t. to x
    1u.dudx=x.1y.dydx+logy.1
    dudx=u[xy.dydx+logy]
    dudx=yx[xy.dydx+logy].... (2)
    v=xy
    Taking log both side
    logv=logxy
    logv=y.logx
    1v.dvdx=y.1x+logx.dydx
    dvdx=v[yx+logx.dydx]
    dvdx=xy[yx+logx.dydx].... (3)
    w=xx
    Taking log both side
    logw=logxx
    logw=xlogx
    1w.dwdx=x.1x+logx.1
    1w.dwdx=1+logx
    dwdx=w(1+logx)
    dwdx=xx(1+logx).... (4)
    dydx=xx(1+logx)y.xy1yxlogyx.yx1+xylogx. (by putting 2,3 and 4 in 1)