Determinants - Exemplar Solutions

 CBSE Class–12 Mathematics

NCERT Exemplar
Chapter - 4
DETERMINATS - Short Answer Questions


1. If then find x.

Sol. We have . This gives

2. If , then prove that = 0.

Sol. We have 

Interchanging rows and columns, we get

Interchanging C1and C2

3. Without expanding, show that

Sol. Applying , we have

4. Show that 

Sol. Applying , we have

Expanding along . We have

5. If , then show that is equal to zero.

Sol. Interchanging rows and columns, we get

Taking ‘–1’ common from R1, Rand R3, we get

6. Prove that , where A is an invertible matrix.

Sol. Since A is an invertible matrix, so it is non-singular.

We know that |A| = |A′|. But |A| ≠ 0. So |A′| ≠0 i.e. A′ is invertible matrix.

Now, we know that AA–1= A–1A = I.

Taking transpose on both sides, we get (A–1)′ A′= A′(A–1)′= (I)′ = I

Hence (A–1)′ is inverse of A′, i.e., (A′)–1= (A–1)′

 


7. If x= – 4 is a root of then find the other two roots.

Sol. Applying we get

Taking (x+4) common from R1, we get

Applying we get

Expanding along R1,

Δ = (x+ 4) [(x – 1) (x– 3) – 0]. Thus, Δ = 0 implies

8. In a triangle ABC, if

then prove that ΔABC is an isoceles triangle.

Sol. Let 

.

Expanding along R1, we get

= (sinB – sinA) (sinC – sinB) (sinC – sin A) = 0

⇒ either sinB – sinA = 0 or sinC – sinB or sinC – sinA = 0

⇒ A = B or B = C or C = A

i.e. triangle ABC is isosceles.

9. Show that if the determinant then 

Sol. Applying and , we get

or 2 [5 (2 + 7 sin3θ) – 10 (cos2θ+ 4sin3θ)] = 0

or 2 + 7 sin3θ– 2 cos2θ– 8 sin3θ= 0

or 2 – 2cos 2θ– sin 3θ= 0

sinθ(4sin2θ+4sinθ– 3) = 0

or sinθ= 0 or (2sinθ– 1) = 0 or (2sinθ + 3) = 0

or sinθ= 0 or .


Objective Questions

Choose the correct answer from the given four options in each of the Example 10 and 11.

10. Let then

(A) Δ1= – Δ

(B) Δ ≠ Δ1

(C) Δ– Δ1= 0

(D) None of these

Sol. (C) is the correct answer since =

11. If x, yR, then the determinant lies in the interval.

(A) 

(B) [–1, 1]

(C) 

(D) 

Sol. The correct choice is A. Indeed applying R3→R3– cosyR1+ sinyR2, we get

Expanding along R3, we have

Δ = (siny– cosy) (cos2x+ sin2x)

= (siny– cosy) = 

Hence 

Fill in the blanks in each of the Examples 12 to 14.

12. If A, B, C are the angles of a triangle, then

Sol. Answer is 0. Apply 

13. The determinant is equal to ...............

Sol. Answer is 0. Taking common from C2and C3and applying we get the desired result.

14. The value of the determinant

Sol. Δ= 0. Apply .

State whether the statements in the s 15 to 18 is True or False.

15. The determinant

is independent of x only.

Sol. True. Apply , and expand.

16. The value of is 8.

Sol. True

17. If then

.

Sol. False.

18. If then x= 1, y= – 1.

Sol. True