CBSE Test Paper 01
Chapter 4 Determinants
The roots of the equation det. ∣∣∣∣1−x0022−x2303−x∣∣∣∣=0 are
- None of these
- 2 and 3
- 1, 2 and 3
- 1 and 3
If A’ is the transpose of a square matrix A, then
- |A| + |A'| = 0
- |A| = |A'|
- |A| ≠ |A'|
- None of these
If f(x) = ∣∣∣∣2cosx1012cosx1012cosx∣∣∣∣ then, f (π3) =.
The roots of the equation ∣∣∣∣1114−22x2055x2∣∣∣∣=0 are
If A and B are any 2 × 2 matrices , then det. (A+B) = 0 implies
- det A + det B = 0
- det A = 0 or det B = 0
- None of these
- det A = 0 and det B = 0
- If ∣∣∣2x85x∣∣∣=∣∣∣6853∣∣∣, then x is ________.
- Multiplying a determinant by k means multiplying the elements of only one row (or one column) by ________.
- If elements of a row (or a column) in a determinant can be expressed as the sum of two or more elements, then the given determinant can be expressed as the ________ of two or more determinants.
Find adj A for A=[2134].
A=[1428]is singular or not.
Evaluate 2∣∣∣7−10−25∣∣∣.
Evaluate: ∣∣∣∣cosαcosβ−sinβsinαcosβcosαsinβcosβsinαsinβ−sinα0cosα∣∣∣∣.
Find the area of Δwhose vertices are (3, 8) (-4, 2) and (5, 1).
Find the equation of the line joining A (1, 3) and B (0, 0) using det. Find K if D (K, 0) is a point such that area of ΔABD is 3 square unit.
If A = ⎡⎣⎢10−2−2−12341⎤⎦⎥, then find (A')-1.
If A=[3−1−42], find matrix B such that AB = I.
Using properties of determinants, prove that
∣∣∣∣b+cq+ry+zc+ar+pz+xa+bp+qx+y∣∣∣∣=2∣∣∣∣apxbqycrz∣∣∣∣.
Given A=⎡⎣⎢112−1−211−23⎤⎦⎥ and B=⎡⎣⎢−4−7541−343−1⎤⎦⎥. find AB and use this result in solving the following system of equation.
x - y + z = 4, x - 2y - 2z = 9, 2x + y + 3z = 1
CBSE Test Paper 01
Chapter 4 Determinants
Solution
- 1 , 2 and 3
Explanation: Expanding along C1
∣∣∣∣1−x0022−x2303−x∣∣∣∣=0⇒ (1 - x)(2 - x)(3 - x) = 0⇒ x = 1, 2 ,3.
- |A| = |A'|
Explanation: The determinant of a matrix A and its transpose always same. Because if we interchange the rows into column in a determinant the value of determinant remains unaltered.
- –1
Explanation: ∣∣∣∣2cosx1012cosx1012cosx∣∣∣∣
Put x = π3, ∣∣∣∣∣2cosπ31012cosπ31012cosπ3∣∣∣∣∣
⇒∣∣∣∣∣2.121012.121012.12∣∣∣∣∣
⇒∣∣∣∣110111011∣∣∣∣⇒1(0)−1(1)=−1
- –1 , 2
Explanation: ∣∣∣∣1114−22x2055x2∣∣∣∣=0
Apply, R3→R3 - R1, R2→R2 - R1,
⇒ ∣∣∣∣1004−62x−420−155x2−20∣∣∣∣=0
⇒ -6(5x2 - 20) + 15(2x - 4) =0
⇒ (x - 2)(x + 1) = 0 ⇒ x= 2 , -1.
- None of these
Explanation: If det (A+B)=0 implies that A+B a Singular matrix.
- x = ±3
- k
- sum
- adjA=[4−1−32]
- |A|=∣∣∣1428∣∣∣
= 8 - 8
= 0
Hence A is singular - According to the question, we have to evaluate 2∣∣∣7−10−25∣∣∣.
Now, 2∣∣∣7−10−25∣∣∣=2[35−(20)]
=2×15=30 - Let Δ=∣∣∣∣cosαcosβ−sinβsinαcosβcosαsinβcosβsinαsinβ−sinα0cosα∣∣∣∣
Expanding along first row,
=cosαcosβ(cosαcosβ−0) −cosαsinβ(−cosαsinβ−0) −sinα(−sinαsin2β−sinαcos2β)
=cos2αcos2β+cos2αsin2β +sin2α(sin2β+cos2β)
=cos2α(cos2β+sin2β) +sin2α(sin2β+cos2β)
=cos2α+sin2α
= 1 - Δ=12∣∣∣∣x1x2x3y1y2y3111∣∣∣∣
=12∣∣∣∣3−45821111∣∣∣∣
=12[3(2−1)−8(−4−5)+1(−4+10)]
=12[3+72−14]=612 - Let P (x, y) be any point on AB. Then the equation of line AB is,
12∣∣∣∣01x03y111∣∣∣∣=0
y = 3x
Area ΔABD=3 square unit
12∣∣∣∣10K300111∣∣∣∣=±3
k=±2 - If A = ⎡⎣⎢10−2−2−12341⎤⎦⎥, then we have to find (A')-1.
Now, A = ⎡⎣⎢10−2−2−12341⎤⎦⎥ Therefore, we have, |A|=∣∣∣∣10−2−2−12341∣∣∣∣
= 1 (-1 - 8) + 2 (0 + 8) + 3 (0 - 2)
[expanding along R1]
=-9+16-6=1≠0
Therefore, A is non-singular matrix and hence its inverse exists.
Cofactors of an element of |A| are given by
A11=(−1)1+1∣∣∣−1241∣∣∣=(−1−8)=−9
A12=(−1)1+2∣∣∣0−241∣∣∣=−(0+8)=−8
A13=(−1)1+3∣∣∣0−2−12∣∣∣=(0−2)=−2
A21=(−1)2+1∣∣∣−2231∣∣∣=−(−2−6)=8
A22=(−1)2+2∣∣∣1−231∣∣∣=(1+6)=7
A23=(−1)2+3∣∣∣1−2−22∣∣∣=−(2−4)=2
A31=(−1)3+1∣∣∣−2−134∣∣∣=(−8+3)=−5
A32=(−1)3+2∣∣∣1034∣∣∣=−(4−0)=−4
A33=(−1)3+3∣∣∣10−2−1∣∣∣=(−1−0)=−1
Thus, adj A = ⎡⎣⎢A11A12A13A21A22A23A31A32A33⎤⎦⎥=⎡⎣⎢−9−8−2872−5−4−1⎤⎦⎥
Hence, A−1=1|A| adj A=11⎡⎣⎢−9−8−2872−5−4−1⎤⎦⎥
Now, (A')-1 = (A-1)' = ⎡⎣⎢−9−8−2872−5−4−1⎤⎦⎥′=⎡⎣⎢−98−5−87−4−22−1⎤⎦⎥ - |A|=2≠0
Therefore A-1 exists
AB = I
A-1 AB = A-1I
B = A-1
adjA=[2143]
A−1=1|A|(adjA)
=12[2143]
=[112232]
Hence B=[112232] - According to the question,we have to use properties of determinants to prove that,
∣∣∣∣b+cq+ry+zc+ar+pz+xa+bp+qx+y∣∣∣∣=2∣∣∣∣apxbqycrz∣∣∣∣
Let LHS = ∣∣∣∣b+cq+ry+zc+ar+pz+xa+bp+qx+y∣∣∣∣
Therefore,on applying C1→ C1 + C2 + C3 we get,
Δ=∣∣∣∣∣2(a+b+c)2(p+q+r)2(x+y+z)c+ar+pz+xa+bp+qx+y∣∣∣∣∣
on taking 2 common from C1,we get,
Δ=2∣∣∣∣a+b+cp+q+rx+y+zc+ar+pz+xa+bp+qx+y∣∣∣∣
On applying C2→ C2 - C1 and C3 → C3 - C12,
we get
Δ=2∣∣∣∣a+b+cp+q+rx+y+z−b−q−y−c−r−z∣∣∣∣
on applying C1→C1+C2+C3,we get,
Δ=2∣∣∣∣apx−b−q−y−c−r−z∣∣∣∣
∴ Δ=2∣∣∣∣apxbqycrz∣∣∣∣ [taking (-1) common from both C2 and C3]
= RHS - x - y + z = 4
x - 2y - 2z = 9
2x + y + 3z = 1
Let A=⎡⎣⎢112−1−211−23⎤⎦⎥X=⎡⎣⎢xyz⎤⎦⎥C=⎡⎣⎢491⎤⎦⎥
AX = C
AB=⎡⎣⎢112−1−211−23⎤⎦⎥⎡⎣⎢−4−7541−343−1⎤⎦⎥ =⎡⎣⎢800080008⎤⎦⎥
AB = 8I
A−1=18B[∵A−1AB=8A−1IB=8A−1]
=18⎡⎣⎢−4−7541−343−1⎤⎦⎥
X = A-1C
⎡⎣⎢xyz⎤⎦⎥=⎡⎣⎢3−2−1⎤⎦⎥
x = 3, y = -2, z = -1