Determinants - Test Papers

 CBSE Test Paper 01

Chapter 4 Determinants


  1. The roots of the equation det. |1x2302x0023x|=0 are 
    1. None of these
    2. 2 and 3
    3. 1, 2 and 3
    4. 1 and 3
  2. If A’ is the transpose of a square matrix A, then 
    1. |A| + |A'| = 0
    2. |A| = |A'|
    3. |A|  |A'|
    4. None of these
  3. If f(x) = |2cosx1012cosx1012cosx| then, f (π3) =. 
    1. 0
    2. 1
    3. -1
    4. 2
  4. The roots of the equation |142012512x5x2|=0 are 
    1. –1, –2
    2. –1, 2
    3. 1, –2
    4. 1, 2
  5. If A and B are any × 2 matrices , then det. (A+B) = 0 implies 
    1. det A + det B = 0
    2. det A = 0 or det B = 0
    3. None of these
    4. det A = 0 and det B = 0
  6. If |2x58x|=|6583|, then x is ________.
  7. Multiplying a determinant by k means multiplying the elements of only one row (or one column) by ________.
  8. If elements of a row (or a column) in a determinant can be expressed as the sum of two or more elements, then the given determinant can be expressed as the ________ of two or more determinants.
  9. Find adj A for A=[2314]. 
  10. A=[1248]is singular or not. 
  11. Evaluate 2|72105|
  12. Evaluate: |cosαcosβcosαsinβsinαsinβcosβ0sinαcosβsinαsinβcosα|
  13. Find the area of Δwhose vertices are (3, 8) (-4, 2) and (5, 1). 
  14. Find the equation of the line joining A (1, 3) and B (0, 0) using det. Find K if D (K, 0) is a point such that area of ΔABD is 3 square unit. 
  15. If A = [123014221], then find (A')-1
  16. If A=[3412], find matrix B such that AB = I. 
  17. Using properties of determinants, prove that
    |b+cc+aa+bq+rr+pp+qy+zz+xx+y|=2|abcpqrxyz|.
  18. Given A=[111122213] and B=[444713531]. find AB and use this result in solving the following system of equation.
    x - y + z = 4, x - 2y - 2z = 9, 2x + y + 3z = 1

CBSE Test Paper 01
Chapter 4 Determinants


Solution

    1. 1 , 2 and 3
      Explanation: Expanding along C1
      |1x2302x0023x|=0 (1 - x)(2 - x)(3 - x) = 0 x = 1, 2 ,3.
    1. |A| = |A'|
      Explanation: The determinant of a matrix A and its transpose always same. Because if we interchange the rows into column in a determinant the value of determinant remains unaltered.
    1. –1
      Explanation: |2cosx1012cosx1012cosx|
      Put x = π3|2cosπ31012cosπ31012cosπ3|
      |2.121012.121012.12|
      |110111011|1(0)1(1)=1
    1. –1 , 2
      Explanation: |142012512x5x2|=0
      Apply, R3R3 - R1, R2R- R1,
       |1420061502x45x220|=0
       -6(5x2 - 20) + 15(2x - 4) =0
       (x - 2)(x + 1) = 0  x= 2 , -1.
    1. None of these
      Explanation: If det (A+B)=0 implies that A+B a Singular matrix.
  1. x = ±3
  2. k
  3. sum
  4. adjA=[4312]
  5. |A|=|1248|
    = 8 - 8
    = 0
    Hence A is singular
  6. According to the question, we have to evaluate 2|72105|.
    Now, 2|72105|=2[35(20)]
    =2×15=30
  7. Let Δ=|cosαcosβcosαsinβsinαsinβcosβ0sinαcosβsinαsinβcosα|
    Expanding along first row,
    =cosαcosβ(cosαcosβ0) cosαsinβ(cosαsinβ0) sinα(sinαsin2βsinαcos2β)
    =cos2αcos2β+cos2αsin2β +sin2α(sin2β+cos2β)
    =cos2α(cos2β+sin2β) +sin2α(sin2β+cos2β)
    =cos2α+sin2α
    = 1
  8. Δ=12|x1y11x2y21x3y31|
    =12|381421511|
    =12[3(21)8(45)+1(4+10)]
    =12[3+7214]=612
  9. Let P (x, y) be any point on AB. Then the equation of line AB is,
    12|001131xy1|=0
    y = 3x
    Area ΔABD=3 square unit
    12|131001K01|=±3
    k=±2
  10. If A = [123014221], then we have to find (A')-1.
    Now, A = [123014221] Therefore, we have, |A|=|123014221|
    = 1 (-1 - 8) + 2 (0 + 8) + 3 (0 - 2)
    [expanding along R1]
    =-9+16-6=10
    Therefore, A is non-singular matrix and hence its inverse exists.
    Cofactors of an element of |A| are given by
    A11=(1)1+1|1421|=(18)=9
    A12=(1)1+2|0421|=(0+8)=8
    A13=(1)1+3|0122|=(02)=2
    A21=(1)2+1|2321|=(26)=8
    A22=(1)2+2|1321|=(1+6)=7
    A23=(1)2+3|1222|=(24)=2
    A31=(1)3+1|2314|=(8+3)=5
    A32=(1)3+2|1304|=(40)=4
    A33=(1)3+3|1201|=(10)=1
    Thus, adj A = [A11A21A31A12A22A32A13A23A33]=[985874221]
    Hence, A1=1|A| adj A=11[985874221]
    Now, (A')-1 = (A-1)' = [985874221]=[982872541]
  11. |A|=20
    Therefore A-1 exists
    AB = I
    A-1 AB = A-1I
    B = A-1
    adjA=[2413]
    A1=1|A|(adjA)
    =12[2413]
    =[121232]
    Hence B=[121232]
  12. According to the question,we have to use properties of determinants to prove that,
    |b+cc+aa+bq+rr+pp+qy+zz+xx+y|=2|abcpqrxyz|
    Let LHS = |b+cc+aa+bq+rr+pp+qy+zz+xx+y|
    Therefore,on applying C1 C1 + C+ C3 we get,
    Δ=|2(a+b+c)c+aa+b2(p+q+r)r+pp+q2(x+y+z)z+xx+y|
    on taking 2 common from C1,we get,
    Δ=2|a+b+cc+aa+bp+q+rr+pp+qx+y+zz+xx+y|
    On applying C2 C2 - C1 and C3  CC12,
    we get
    Δ=2|a+b+cbcp+q+rqrx+y+zyz|
    on applying C1C1+C2+C3,we get,
    Δ=2|abcpqrxyz|
     Δ=2|abcpqrxyz| [taking (-1) common from both C2 and C3]
    = RHS
  13. x - y + z = 4
    x - 2y - 2z = 9
    2x + y + 3z = 1
    Let A=[111122213]X=[xyz]C=[491]
    AX = C
    AB=[111122213][444713531] =[800080008]
    AB = 8I
    A1=18B[A1AB=8A1IB=8A1]
    =18[444713531]
    X = A-1C
    [xyz]=[321]
    x = 3, y = -2, z = -1