Differential Equations - Test Papers

 CBSE Test Paper 01

Chapter 9 Differential Equations


  1. In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 double itself in 10 years (loge2 = 0.6931).
    1. 9.93%
    2. 7.93%
    3. 6.93%
    4. 8.93%
  2. General solution ofcos2xdydx+y=tanx(0x<π2) is 
    1. y=(tanx1)+Cetanx
    2. y=(tanx+1)+Cetanx
    3. y=(tanx+1)Cetanx
    4. y=(tanx1)Cetanx
  3. The number of arbitrary constants in the general solution of a differential equation of fourth order are: 
    1. 3
    2. 2
    3. 1
    4. 4
  4. In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs1000 is deposited with this bank, how much will it worth after 10 years (e0.5= 1.648). 
    1. Rs 1848
    2. Rs 1648
    3. Rs 1748
    4. Rs 1948
  5. What is the order of differential equation : d3ydx3+d2ydx2+(dydx)2=ex
    1. 2
    2. 3
    3. 1
    4. 0
  6. F(x, y) = x2+y2+yx is a homogeneous function of degree ________.
  7. The degree of the differential equation 1+(dydx)2=x is ________.
  8. The order of the differential equation of all circles of given radius a is ________.
  9. Verify that the function is a solution of the corresponding differential equation y=xsinx;xy,=y+xx2y2
  10. Find order and degree. d4ydx2+sin(y)=0
  11. Write the solution of the differential equation dydx=2y
  12. Verify that the given function (explicit) is a solution of the corresponding differential equation: y = x2 + 2x + C : y' - 2x - 2 = 0. 
  13. Find the differential equation of all non-horizontal lines in a plane. 
  14. Verify that the function is a solution of the corresponding differential equation
    y=1+x2;y=xy1+x2
  15. Solve the following differential equation.
    (y+3x2)dxdy=x
     
  16. Solve the differential equation (1 + y2) tan-1x dx + 2y (1 + x2) dy = 0. 
  17. Find the particular solution of the differential equation (1 + e2x)dy + (1 + y2)ex dx = 0, given that y = 1, when x = 0. 
  18. Solve (1+exy)dx+exy(1xy)dy=0

CBSE Test Paper 01
Chapter 9 Differential Equations


Solution

    1. 6.93%
      Explanation: Let P be the principal at any time t. then,
      dPdt=rP100dPdt=P100
      1PdP=r100dt
      logP=r100t+logc
      logPc=r100t
      P=cer100
      When P = 100 and t = 0., then, c = 100, therefore, we have:
      P=100 er100
      Now, let t = T, when P = 100., then;
      200=100eT100
      eT100=2
      T=100log2 = 100(0.6931) = 6.93%
    1. y=(tanx1)+Cetanx
      Explanation: dydx+sec2x.y=tanx.sec2xP=sec2x,Q=tanx.sec2x
      I.F.=esec2xdx=etanx
      y.etanx=tanxsec2xetanxdxy.etanx=(tanx1)etanx+C
      y=(tanx1)+Cetanx
    1. 4
      Explanation: 4, because the no. of arbitrary constants is equal to order of the differential equation.
    1. Rs 1648
      Explanation: Here P is the principal at time t
      dPdt=5P100dPdt=P20
      1PdP=120dt
      logP=120t+logc
      logPc=120t
      P=ce1100
      When P = 1000 and t = 0 ., then ,
      c = 1000, therefore, we have :
      P=1000eT100
      A=1000e510
      e510=A
      A=1000log0.5
      = 1000(1.648)
      = 1648
    1. 3
      Explanation: Order = 3. Since the third derivative is the highest derivative present in the equation. i.e.d3ydx3
  1. Zero
  2. not defined
  3. 2
  4. y=x.sinx...(1)
    y,=x.cosx+sinx.1
    xy,=x2cosx+x.sinx
    xy,=x21sin2x+x.sinx
    xy,=x21(yx)2+x.sinx [yx=sinx]
    xy,=x2x2y2x+x.sinx
    xy,=xx2y2+y
    Hence proved.
  5. order = 4 ,degree = not defined
  6. Given differential equation is
    dydx=2y
    on separating the variables, we get
    2ydy = dx
    On integrating both sides, we get
    2ydy=dx
    2ylog2=x+C1
     2y = x log 2 + C1 log 2
     2y = x log 2 + C, where C = C1 log 2
  7. Given: y = x2 + 2x + C ...(i)
    To prove: y is a solution of the differential equation y' - 2x - 2 = 0 ...(ii)
    Proof:From, eq. (i),
    y' = 2x + 2
    L.H.S. of eq. (ii),
    = y' - 2x - 2
    = (2x + 2) - 2x - 2
    = 2x + 2 - 2x - 2 = 0 = R.H.S.
    Hence, y given by eq. (i) is a solution of y' - 2x - 2 = 0.
  8. The general equation of all non-horizontal lines in a plane is ax + by = c, where a0.
    differentiating both sides w.r.t. y on both sides,we get
    adydx+b=0
    Again, differentiating both sides w.r.t. y, we get
    ad2xdy2=0d2xdy2=0.
  9. y=1+x2 ......(i)
    y=121+x2.2x ......(ii)
    (ii)÷(i),we get,
    yy=x1+x21+x2
    yy=x1+x2
    y=xy1+x2
    Hence given value of y is the solution of given differential equation.
  10. According to the question,we have to solve the differential equation ,
    (y+3x2)dxdy=xdydx=yx+3x
    dydxyx=3x
    which is a linear differential equation of the form
    dydx+Py=Q.
    Here, P=1xand Q = 3x
    IF=ePdx=e1xdx=elog|x|=elogx1=x1
    IF=x1=1x
    The solution of linear differential equation is given by
    y×IF=(Q×IF)dx+C
    y×1x=(3x×1x)dx+C
    yx=3dx+Cyx=3x+C
    y=3x2+Cx
    which is the required solution.
  11. Given differential equation is
    (1 + y2) tan-1x dx + 2y (1 + x2) dy = 0
    (1+y2)tan1xdx=2y(1+x2)dy
    tan1xdx1+x2=2y1+y2dy
    On integrating both sides, we get
    tan1x1+x2dx=2y1+y2dy
    Put tan1x=tinLHS, we get
    11+x2dx=dt
    and put 1 + y2 = u in RHS, we get
    2ydy = du
    tdt=1ut22=logu+C
    12(tan1x)2=log(1+y2)+C
    12(tan1x)2+log(1+y2)=C
  12. Given differential equation is,
    (1 + e2x)dy + (1 + y2)ex dx = 0
    Above equation may be written as
    dy1+y2=ex1+e2xdx
    On integrating both sides, we get
    dy1+y2=ex1+e2xdx
    On putting ex = t  ex dx = dt in RHS, we get
    tan1y=11+t2dt
    tan1y=tan1t+C
    tan1y=tan1(ex)+C ...(i) [put t = ex]
    Also, given that y = 1, when x = 0.
    On putting above values in Eq. (i), we get
    tan-11 = -tan-1(e0) + C
    tan11=tan11+C[e0=1]
    2tan11=C
    2tan1(tanπ4)=C
    C=2×π4=π2
    On putting C=π2 in Eq. (i), we get
    tan1y=tan1ex+π2
    y=tan[π2tan1(ex)]=cot[tan1(ex)]
    =cot[cot1(1ex)][tan1x=cot11x]
    y=1ex
    which is the required solution.
  13. (1+exy)dx+exy(1xy)dy=0
    dxdy=ex/y(1xy)1+ex/y
    dxdy=ex/y(xy1)1+ex/y........(1)
    Let x = vy, then,
    dxdy=v+ydvdy
    Put dxdy in eq (1),we get,
    v+ydvdy=ev(v1)ev+1
    ydvdy=vevevev+1v
    ydvdy=vevevvevvev+1
    dyy=ev+1v+evdv
    log(ev+v)=log(y)+c
    log((ev+v).y)=c
    (ev+v)y=ec
    (ev+v)y=A [Putting ec = A]
    (ex/y+xy)y=A