CBSE Test Paper 01
Chapter 7 Integrals
∫1ex+1dx is equal to
- log (1+e−2x)+C
- log(e−2x−2x)+C
- – log(1 + e-x) + C
- log(e3x+x)+C
The functionf(x)=∫0xlog(t+1+t2)−−−−−−√dt is
- an odd function
- an even function
- Neither odd nor Even
- a periodic function
∫0π/2log|cosx|dx is equal to
- −π2log2
- πlog 2
- π2log3
- −π3log3
∫ablogxxdx is equal to
- log(b−a)b−a
- log (a+b).log (b–a)
- log(ab).log(ba)
- 12log(ab).log(ba)
If ∫f(x) dx = f (x), then
- f(x) = ax
- f (x) = x
- f(x) = 0
- f(x)=ex
- The function A(x) denotes the ________ function and is given by A (x) = ∫axf(x)dx.
- The indefinite integral of 2x12 is ________.
- The indefinite integral of 2x2 + 3 is ________.
Show that ∫2x+3x2+3xdx=log∣∣x2+3x∣∣+C.
Evaluate ∫1011−x2√dx.
Evaluate ∫sin3xdx.
Evaluate the definite integral ∫0π4(2sec2x+x3+2)dx.
Integrate the following function 17−6x−x2√.
Integrate the function (x2 + 1) log x
∫π/40sinxcosxcos4x+sin4xdx.
Evaluate ∫1−sinx√1+cosxe−x2dx.
Evaluate ∫01xlog(1+2x)dx
Evaluate ∫31(2x2+5x)dx as a limit of a sum.
CBSE Test Paper 01
Chapter 7 Integrals
Solution
- –log(1 + e-x) + C, Explanation: ∫e−x1+e−xdx=−∫−e−x1+e−xdx=−log(1+e−x)+C
- an even function, Explanation: t = -u
f(-x) = ∫0xlog(−u+1+u2−−−−−√)(−du)
= −∫0πlog(1+u+u21+u2+u√)(−du)
= ∫0xlog(u+1+u2−−−−−√)du = f(x)
⇒ f(-x) = f(x) ⇒ f is an even function
- −π2log2, Explanation: ∫0π/2log|cosx|dx
=∫0π/2log∣∣cos(π2−x)∣∣dx
=∫0π/2log|sinx|dx
=−π2log2(standard result)
- 12log(ab).log(ba), Explanation: =∫ab(logx)1(1x)dx
(letlogx=tthen1xdx=dt)
=[(logx)22]ba
=12[(logb)2−(loga)2]
=12(logb+loga)(logb−loga)
=12log(ab)logba
- f(x)=ex, mExplanation: ddx(f(x))=f(x)
It implies that the function remains same after integrating or differentiating it. So the function must be ex
- area
- 43x32+c
- =45x54+c
- Let I=∫2x+3x2+3xdx
Put x2 + 3x = t
⇒ (2x + 3)dx = dt
∴I=∫1tdt=log|t|+C
= log |(x2 + 3x)| + C - According to the question , I=∫1011−x2√dx
= [sin−1x]10[∵∫ab11−x2√dx=sin−1(a)−sin−1(b)]
=sin−1(1)−sin−1(0)
=sin−1(sinπ2)−sin−1(sin0)
=π2−0=π2 - Let I=∫sin3xdx=∫3sinx−sin3x4dx [∵sin3x=3sinx−4sin3x]
=14∫3sinxdx−14∫sin3xdx
=14(−3cosx+cos3x3)+C - ∫0π4(2sec2x+x3+2)dx
=2∫0π4sec2xdx+∫0π4x3dx+2∫0π41dx
=2(tanx)π40+(x44)π40+2(x)π40
=2(tanπ4−tan0o)+(π4)44−0 +2(π4−0)
=2(1−0)+(π4256)4+2π4
=2+π41024+π2
=π41024+π2+2 - ∫17−6x−x2√dx
=∫1−x2−6x+7√dx
=∫1−(x2+6x−7)√dx
=∫1−(x2+6x+9−9−7)√dx
=∫1−{(x+3)2−16}√dx
=∫1(16)−(x+3)2√dx
=∫1(4)2−(x+3)2√dx
=sin−1(x+34)+c
[∵∫1a2−x2dx=sin−1xa] - ∫(x2+1)logxdx
=∫(logx)(x2+1)dx
[Applying product rule]
=logx(x33+x)−∫1x(x33+x)dx
=(x33+x)logx−∫(x23+1)dx
=(x33+x)logx−13∫x2dx−∫1dx
=(x33+x)logx−13x33−x+c
=(x33+x)logx−x39−x+c - I=∫π/40sinxcosxcos4x+sin4xdx
Dividing Numerator and Denominator by cos4x
=∫π/40sinx.cosxcos4xcos4xcos4x+sin4xcos4xdx
=∫π/40tanx.sec2x1+tan4xdx
=∫π/40tanx.sec2x1+(tan2x)2dx
put tan2x=t
2tanx.sec2xdx=dt
when x=0, t=0 and when x=π4 t=1
∴I=12∫10dt1+t2
=12[tan−1t]10
=12.π4=π8 - Given, I=∫1−sinx√1+cosx⋅e−x2dx
Let −x2=t⇒dx=−2dt
I=∫1−sin(−2t)√1+cos(−2t)et(−2dt) [∵x=−2t]
=−2∫et1+sin2t√1+cos2tdt[∵sin(−θ)=−sinθ and cos(−θ)=cosθ]
=−2∫etcos2x+sin2x+2sinxcosx√1+cos2tdt[∵cos2x+sin2x=1,sin2x=2sinxcosx]
=−2∫et((cost+sint)2√2cos2t)dt[∵(a+b)2=a2+b2+2ab]
=−2∫et(cost+sint2cos2t)dt
=−∫et(sect+tantsect)dt[∵1cosx=secx,sinxcosx=tanx]
we know that , ∫et[f(t)+f′(t)]dt=etf(t)+C
Now, consider f(t)=sec t
then f′(t)=sec t tan t
∴I=etsect+C
=−e−x/2secx2+C[∵t=−x2 and sec(−θ)=secθ]
I=−e−x/2secx2+C - I=∫01xlog(1+2x)dx
=[log(1+2x)x22]10−∫11+2x.2.x22dx
=12[x2log(1+2x)]10−∫x21+2xdx
=12[log3−0]10−[∫10(x2−x21+2x)dx]
=12log3−12∫10xdx+12∫10x1+2xdx
=12log3−12[x22]10+12∫1012(2x+1−1)(2x+1)dx
=12log3−12[12−0] +14∫10dx−14∫1011+2xdx
=12log3−14+14[x]10−18[log|(1+2x)|]10
=12log3−14+14−18[log3−log1]
=12log3−18log3
=38log3 - According to the question , I=∫31(2x2+5x)dx
On comparing the given integral with ∫baf(x)dx, we get
a = 1, b = 3 and f(x) =2x2 + 5x
We know that , ∫baf(x)dx=limh→0h[f(a)+f(a+h)+f(a+2h)+...+f(a+(n−1)h) ]...(i)
where, h=b−an⇒nh=b−a =3−1=2
f(a) = f(1) = 2(1)2 + 5(1) = 2 + 5 = 7
f(a+h) = f(1 + h) = 2(1 + h)2 + 5(1 + h) = 2 + 2h2 + 4h + 5 + 5h = 2h2+ 9h + 7
f(a + 2h) = 2(1 + 2h)2 + 5(1 + 2h) = 2 + 8h2 + 8h + 5 +10h = 8h2 + 18h + 7
so on
f(a+(n-1)h) = f{1 + (n - 1)h} = 2{1 + (n - 1)h}2 + 5{1 + (n - 1)h}2 = 2 + 2(n - 1)2h2 + 4(n - 1)h + 5 + 5(n - 1)h = 2(n - 1)2h2 + 9(n - 1)h + 7
On putting all above values in (i), we get
∫31(2x2+5x)dx=limh→0h[7 + (2h2 + 9h + 7) +(8h2 + 18h + 7).......+2(n - 1)2h2 + 9(n - 1)h + 7]
On rearranging terms , we get
=limh→0h[7 + 7+ 7........+ 7] + limh→0h[2h2 + 8h2+.........+2(n - 1)2h2] + limh→0h[9h + 18h +......+9(n -1 )h]
=limh→07nh + limh→02h3[ 12 + 22 + 32 +.........+(n -1)2] +limh→09h2[ 1+ 2 +........+(n - 1)]
=limh→07(2)+limh→02h3⋅n(n−1)(2n−1)6+limh→09h2⋅n(n−1)2[∵∑n=n(n+1)2,∑n2=n(n+1)(2n+1)6]
=14+limh→0nh(nh−h)(2nh−h)3+ limh→092⋅nh(nh−h)
=14+2(2−0)(4−0)3+92⋅2(2−0)
=14+163+18
=42+16+543
=1123 sq units.