Integrals - Test Papers

 CBSE Test Paper 01

Chapter 7 Integrals


  1. 1ex+1dx is equal to 

    1. log (1+e2x)+C
    2. log(e2x2x)+C
    3. – log(1 + e-x) + C
    4. log(e3x+x)+C
  2. The functionf(x)=0xlog(t+1+t2)dt is 

    1. an odd function
    2. an even function
    3. Neither odd nor Even
    4. a periodic function
  3. 0π/2log|cosx|dx is equal to 

    1. π2log2
    2. πlog 2
    3. π2log3
    4. π3log3
  4. ablogxxdx is equal to 

    1. log(ba)ba
    2. log (a+b).log (b–a)
    3. log(ab).log(ba)
    4. 12log(ab).log(ba)
  5. If f(x) dx = f (x), then 

    1. f(x) = ax
    2. f (x) = x
    3. f(x) = 0
    4. f(x)=ex
  6. The function A(x) denotes the ________ function and is given by A (x) = axf(x)dx.
  7. The indefinite integral of 2x12 is ________.
  8. The indefinite integral of 2x2 + 3 is ________.
  9. Show that 2x+3x2+3xdx=log|x2+3x|+C

  10. Evaluate 0111x2dx. 

  11. Evaluate sin3xdx. 

  12. Evaluate the definite integral 0π4(2sec2x+x3+2)dx

  13. Integrate the following function 176xx2

  14. Integrate the function (x2 + 1) log x 

  15. 0π/4sinxcosxcos4x+sin4xdx

  16. Evaluate 1sinx1+cosxex2dx. 

  17. Evaluate 01xlog(1+2x)dx 

  18. Evaluate 13(2x2+5x)dx as a limit of a sum. 

CBSE Test Paper 01
Chapter 7 Integrals


Solution

    1. –log(1 + e-x) + C, Explanation: ex1+exdx=ex1+exdx=log(1+ex)+C
    1. an even function, Explanation: t = -u
      f(-x) = 0xlog(u+1+u2)(du)
      0πlog(1+u+u21+u2+u)(du)
      0xlog(u+1+u2)du = f(x)
       f(-x) = f(x)  f is an even function
    1. π2log2Explanation: 0π/2log|cosx|dx
      =0π/2log|cos(π2x)|dx
      =0π/2log|sinx|dx
      =π2log2(standard result)
    1. 12log(ab).log(ba)Explanation: =ab(logx)1(1x)dx
      (letlogx=tthen1xdx=dt)
      =[(logx)22]ab
      =12[(logb)2(loga)2]
      =12(logb+loga)(logbloga)
      =12log(ab)logba
    1. f(x)=ex, mExplanation: ddx(f(x))=f(x)
      It implies that the function remains same after integrating or differentiating it. So the function must be ex
  1. area
  2. 43x32+c
  3. =45x54+c
  4. Let I=2x+3x2+3xdx
    Put x2 + 3x = t
     (2x + 3)dx = dt
    I=1tdt=log|t|+C
    = log |(x2 + 3x)| + C
  5. According to the question , I=0111x2dx
    [sin1x]01[ba11x2dx=sin1(a)sin1(b)]
    =sin1(1)sin1(0)
    =sin1(sinπ2)sin1(sin0)
    =π20=π2
  6. Let I=sin3xdx=3sinxsin3x4dx [sin3x=3sinx4sin3x]
    =143sinxdx14sin3xdx
    =14(3cosx+cos3x3)+C
  7. 0π4(2sec2x+x3+2)dx
    =20π4sec2xdx+0π4x3dx+20π41dx
    =2(tanx)0π4+(x44)0π4+2(x)0π4
    =2(tanπ4tan0o)+(π4)440 +2(π40)
    =2(10)+(π4256)4+2π4
    =2+π41024+π2
    =π41024+π2+2
  8. 176xx2dx
    =1x26x+7dx
    =1(x2+6x7)dx
    =1(x2+6x+997)dx
    =1{(x+3)216}dx
    =1(16)(x+3)2dx
    =1(4)2(x+3)2dx
    =sin1(x+34)+c
    [1a2x2dx=sin1xa]
  9. (x2+1)logxdx
    =(logx)(x2+1)dx
    [Applying product rule]
    =logx(x33+x)1x(x33+x)dx
    =(x33+x)logx(x23+1)dx
    =(x33+x)logx13x2dx1dx
    =(x33+x)logx13x33x+c
    =(x33+x)logxx39x+c
  10. I=0π/4sinxcosxcos4x+sin4xdx
    Dividing Numerator and Denominator by cos4x
    =0π/4sinx.cosxcos4xcos4xcos4x+sin4xcos4xdx
    =0π/4tanx.sec2x1+tan4xdx
    =0π/4tanx.sec2x1+(tan2x)2dx
    put tan2x=t
    2tanx.sec2xdx=dt
    when x=0, t=0 and when x=π4 t=1
    I=1201dt1+t2
    =12[tan1t]01
    =12.π4=π8
  11. Given, I=1sinx1+cosxex2dx
    Let x2=tdx=2dt
    I=1sin(2t)1+cos(2t)et(2dt) [x=2t]
    =2et1+sin2t1+cos2tdt[sin(θ)=sinθ and cos(θ)=cosθ]
    =2etcos2x+sin2x+2sinxcosx1+cos2tdt[cos2x+sin2x=1,sin2x=2sinxcosx]
    =2et((cost+sint)22cos2t)dt[(a+b)2=a2+b2+2ab]
    =2et(cost+sint2cos2t)dt
    =et(sect+tantsect)dt[1cosx=secx,sinxcosx=tanx]
    we know that , et[f(t)+f(t)]dt=etf(t)+C
    Now, consider f(t)=sec t
    then f(t)=sec t tan t
    I=etsect+C
    =ex/2secx2+C[t=x2 and sec(θ)=secθ]
    I=ex/2secx2+C
  12. I=01xlog(1+2x)dx
    =[log(1+2x)x22]0111+2x.2.x22dx
    =12[x2log(1+2x)]01x21+2xdx
    =12[log30]01[01(x2x21+2x)dx]
    =12log31201xdx+1201x1+2xdx
    =12log312[x22]01+120112(2x+11)(2x+1)dx
    =12log312[120] +1401dx140111+2xdx
    =12log314+14[x]0118[log|(1+2x)|]01
    =12log314+1418[log3log1]
    =12log318log3
    =38log3
  13. According to the question , I=13(2x2+5x)dx
    On comparing the given integral with abf(x)dx, we get
    a = 1, b = 3 and f(x) =2x2 + 5x
    We know that , abf(x)dx=limh0h[f(a)+f(a+h)+f(a+2h)+...+f(a+(n1)h) ]...(i)
    where, h=bannh=ba  =31=2
    f(a) = f(1) = 2(1)2 + 5(1) = 2 + 5 = 7
    f(a+h) = f(1 + h) = 2(1 + h)2 + 5(1 + h) = 2 + 2h2 + 4h + 5 + 5h = 2h2+ 9h + 7
    f(a + 2h) = 2(1 + 2h)2 + 5(1 + 2h) = 2 + 8h2 + 8h + 5 +10h = 8h2 + 18h + 7
    so on
    f(a+(n-1)h) = f{1 + (n - 1)h} = 2{1 + (n - 1)h}2 + 5{1 + (n - 1)h}= 2 + 2(n - 1)2h2 + 4(n - 1)h + 5 + 5(n - 1)h = 2(n - 1)2h2 + 9(n - 1)h + 7
    On putting all above values in (i), we get
    13(2x2+5x)dx=limh0h[7 + (2h2 + 9h + 7) +(8h2 + 18h + 7).......+2(n - 1)2h2 + 9(n - 1)h + 7]
    On rearranging terms , we get
    =limh0h[7 + 7+ 7........+ 7] + limh0h[2h2 + 8h2+.........+2(n - 1)2h2] + limh0h[9h + 18h +......+9(n -1 )h]
    =limh07nh + limh02h3[ 12 + 22 + 32 +.........+(n -1)2] +limh09h2[ 1+ 2 +........+(n - 1)]
    =limh07(2)+limh02h3n(n1)(2n1)6+limh09h2n(n1)2[n=n(n+1)2,n2=n(n+1)(2n+1)6]
    =14+limh0nh(nhh)(2nhh)3limh092nh(nhh)
    =14+2(20)(40)3+922(20)
    =14+163+18
    =42+16+543
    =1123 sq units.