CBSE Test Paper 01
Chapter 2 Inverse Trigonometric Functions
The period of the function f(x) = cos4x + tan3x is
If 3sin−1(2x1+x2) −4cos−1(1−x21+x2)+2tan−1(2x1−x2)=π3. Then, x=.
The value of tan150+cot150is
The values of x which satisfy the trigonometric equation tan−1(x−1x−2)+tan−1(x+1x+2)=π4 are:
The minimum value of sinx - cosx is
- The principle value of tan-13–√ is ________.
- If y = 2 tan-1x + sin-1(2x1+x2) for all x, then ________ < y < ________.
- The value of cos (sin-1x + cos-1x), |x| ≤ 1 is ________.
Find the principal value of sin−1(12√).
Write the principal value of cos−11 [cos(680)°].
Prove that tan−1x−−√=12cos−1(1−x1+x). (1)
Find the value of the expression tan−1(tan3π4).
Solve the equation: 2tan-1(cosx) = tan-1(2cosec x).
Find the value of sin−1(sin2π3). (2)
Prove that tan−1(1)+tan−1(2)+tan−1(3)=π.
Solve for x, tan−1x2+tan−1x3=π4,6–√>x>0.
Find the value of the following: tan−1[2cos(2sin−112)].
Show that sin−11213+cos−145+tan−16316=π.
CBSE Test Paper 01
Chapter 2 Inverse Trigonometric Functions
Solution
- π, Explanation: f(π)=(cos4π+tan3π) gives the same value as f (0). Therefore, the period of the function is π.
- 13√, Explanation: 3sin−1(2x1+x2)−4cos−1(1−x21+x2)+2tan−1(2x1−x2)=π3
Put x = tanθ
3sin−1(2tanθ1+tan2θ)−4cos−1(1−tan2θ1+tan2θ)+2tan−1(2tanθ1−tan2θ)=π3
3sin−1(sin2θ)−4cos−1(cos2θ)+2tan−1(tan2θ)=π3
3.2θ−4.2θ+2.2θ=π3⇒2θ=π3⇒θ=π6
∴tan−1x=π6⇒x=tan(π6)=13√
- 4, Explanation: tan150+cot150=3√−13√+1+3√+13√−1
=(3√−1)2+(3√+1)22 = 82=4
- ±12√, Explanation: tan−1(x−1x−2)+tan−1(x+1x+2)=π4
tan−1[(x−1x−2)+(x+1x+2)1−(x−1x−2)(x+1x+2)]=Π4
tan−1[(x−1)(x+2)+(x+1)(x−2)(x−2)(x+2)−(x+1)(x−1)]=Π4
(x2+x−2+x2−x−2x2−4−x2+1)=tan−1(Π4)
(2x2−4−3)=1
∴2x2−4=−3
⇒2x2=1
x=±12√
- −2–√, Explanation: Since, range of sine function and cosine function is [-1,1]. But, sine is increasing function and cosine is decreasing function. Therefore, the lowest that both together can attain is −450.
(−12√)+(−12√)=−2–√
- π3
- -2π, 2π
- 0
- Let sin−1(12√)=θ
⇒sinθ=12√
We know that θ∈[−π2,π2]
⇒sinθ=sinπ4 ⇒θ=π4
Therefore, principal value of sin−1(12√) is π4 - We know that, principal value branch of cos−1 x is [0, 180°].
Since, 680° ∈ [0,180°], so write 680° as 2 × 360°-40°
Now, cos−1[cos (680)°] = cos−1 [cos(2 ;× 360°-40°)]
= cos−1(cos40°) [∵cos(4π−θ)=cosθ]
Since, 40°∈ [0,180°]
∴cos−1[cos(680°)] = 40°
[∵cos−1(cosθ)=θ;∀θ∈[0,180∘]]
which is the required principal value. - LHS = tan−1x−−√
Let tanθ=x−−√
tan2θ=x
R.H.S. =12cos−1(1−tan2θ1+tan2θ)
=12cos−1(cos2θ)=12×2θ=θ
=tan−1x−−√ - tan−1(tan3π4)
=tan−1(tan4π−π4)
=tan−1[tan(π−π4)]
=tan−1[−tanπ4]
=tan−1tan(−π4) =−π4 - 2 tan-1(cos x) = tan-1(2 cosec x)
⇒tan−1(2cosx1−cos2x)=tan−1(2sinx)
⇒2cosx1−cos2x=2sinx
⇒cosxsinx=1
⇒ cot x = 1 ⇒x=π4 - sin−1(sin2π3)
=sin−1(sin3π−π3)
=sin−1[sin(π−π3)]
=sin−1sinπ3 =π3 - To prove, tan−1(1)+tan−1(2)+tan−1(3)=π
LHS = tan−1(1)+tan−1(2)+tan−1(3)
=tan−1(tanπ4)+π2−cot−1(2)+π2−cot−1(3) [∵tan−1x+cot−1x=π2]
=π4+π−[cot−1(2)+cot−1(3)][∵tan−1(tanθ)=θ;∀θ∈(−π2,π2)]
=5π4−[tan−1(12)+tan−1(13)][∵cot−1x=tan−11x,x>0]
=5π4−[tan−1(12+131−12⋅13)][∵tan−1x+tan−1y=tan−1(x+y1−xy), if xy<1]
=5π4−tan−1(5/65/6)
=5π4−tan−1(1)=5π4−π4=4π4=π= RHS (Hence Proved) - Here, we have to find the value of x .Now, we are given that
tan−1x2+tan−1x3=π4,6–√>x>0
⇒tan−1(x2+x31−x26)=π4[∵tan−1x+tan−1y=tan−1(x+y1−xy);xy<1]
⇒3x+2x66−x26=tanπ4 { taking tan on both sides}
⇒5x6−x2=1[∵tanπ4=1]
⇒ 5x = 6-x2
⇒ x2 + 5x - 6 = 0
⇒ x2 + 6x - x - 6 = 0
⇒ x (x + 6) - 1 (x + 6) = 0
⇒ (x-1) (x + 6) = 0
∴ x = 1 or - 6
But it is given that, 6–√ > x > 0 ⇒x > 0
∴ x = - 6 is rejected.
Hence, x = 1 is the only solution of the given equation. - tan−1[2cos(2sin−112)]
=tan−1[2cos(2sin−1sinπ6)]
=tan−1[2cos(2×π6)]
=tan−1[2cosπ3]
=tan−1[2×12] = tan-11
=tan−1tanπ4=π4 - Let θ = sin-1(1213)
⇒ sinθ = 1213
⇒1−cos2θ−−−−−−−−√=1213
⇒1−cos2θ=(12)2(13)2
⇒cos2θ=(5)2(13)2
⇒cosθ=513
Since, tanθ = sinθcosθ=1213513=125
⇒θ=tan−1(125)
Thus, θ=sin−1(1213)=tan−1(125)
Similarly, cos−1(513)=tan−1(125)
We have, LHS = sin−1(1213)+cos−1(45)+tan−1(6316)
=tan−1(125)+tan−1(34)+tan−1(6316)
=[tan−1(125)+tan−1(34)]+tan−1(6316)
{since 125×34=95>1, therefore , tan-1A + tan-1B = π+tan−1A+_B1−AB)
=π+tan−1(125+341−(125)(34))+tan−1(6316)
= π+tan−1(−6316)+tan−1(6316)
=π−tan−1(6316)+tan−1(6316) = π Hence Proved.