Inverse Trigonometric Functions - Test Papers

 CBSE Test Paper 01

Chapter 2 Inverse Trigonometric Functions


  1. The period of the function f(x) = cos4x + tan3x is 

    1. π3
    2. π
    3. None of these
    4. π2
  2. If 3sin1(2x1+x2) 4cos1(1x21+x2)+2tan1(2x1x2)=π3. Then, x=. 

    1. 13
    2. 12
    3. 2
    4. 1
  3. The value of tan150+cot150is 

    1. 4
    2. Not defined
    3. 3
    4. 23
  4. The values of x which satisfy the trigonometric equation tan1(x1x2)+tan1(x+1x+2)=π4 are: 

    1. ±2
    2. ±12
    3. ±12
    4. ±2
  5. The minimum value of sinx - cosx is 

    1. 2
    2. -1
    3. 0
    4. 1
  6. The principle value of tan-13 is ________.
  7. If y = 2 tan-1x + sin-1(2x1+x2) for all x, then ________ < y < ________.
  8. The value of cos (sin-1x + cos-1x), |x|  1 is ________.
  9. Find the principal value of sin1(12)

  10. Write the principal value of cos11 [cos(680)°]. 

  11. Prove that tan1x=12cos1(1x1+x)(1)

  12. Find the value of the expression tan1(tan3π4)

  13. Solve the equation: 2tan-1(cosx) = tan-1(2cosec x). 

  14. Find the value of sin1(sin2π3)(2)

  15. Prove that tan1(1)+tan1(2)+tan1(3)=π. 

  16. Solve for x, tan1x2+tan1x3=π4,6>x>0. 

  17. Find the value of the following: tan1[2cos(2sin112)]

  18. Show that sin11213+cos145+tan16316=π

CBSE Test Paper 01
Chapter 2 Inverse Trigonometric Functions


Solution

    1. πExplanation: f(π)=(cos4π+tan3π) gives the same value as f (0). Therefore, the period of the function is π.
    1. 13Explanation: 3sin1(2x1+x2)4cos1(1x21+x2)+2tan1(2x1x2)=π3
      Put x = tanθ
      3sin1(2tanθ1+tan2θ)4cos1(1tan2θ1+tan2θ)+2tan1(2tanθ1tan2θ)=π3
      3sin1(sin2θ)4cos1(cos2θ)+2tan1(tan2θ)=π3
      3.2θ4.2θ+2.2θ=π32θ=π3θ=π6
      tan1x=π6x=tan(π6)=13
    1. 4, Explanation: tan150+cot150=313+1+3+131
      =(31)2+(3+1)22 = 82=4
    1. ±12Explanation: tan1(x1x2)+tan1(x+1x+2)=π4
      tan1[(x1x2)+(x+1x+2)1(x1x2)(x+1x+2)]=Π4
      tan1[(x1)(x+2)+(x+1)(x2)(x2)(x+2)(x+1)(x1)]=Π4
      (x2+x2+x2x2x24x2+1)=tan1(Π4)
      (2x243)=1
      2x24=3
      2x2=1
      x=±12
    1. 2Explanation: Since, range of sine function and cosine function is [-1,1]. But, sine is increasing function and cosine is decreasing function. Therefore, the lowest that both together can attain is 450.
      (12)+(12)=2
  1. π3
  2. -2π, 2π
  3. 0
  4. Let sin1(12)=θ
    sinθ=12
    We know that θ[π2,π2]
    sinθ=sinπ4 θ=π4
    Therefore, principal value of sin1(12) is π4
  5. We know that, principal value branch of cos1 x is [0, 180°].
    Since, 680°  [0,180°], so write 680° as 2 × 360°-40°
    Now, cos1[cos (680)°] = cos1 [cos(2 ;× 360°-40°)]
    cos1(cos40°) [cos(4πθ)=cosθ]
    Since, 40° [0,180°]
    cos1[cos(680°)] = 40°
    [cos1(cosθ)=θ;θ[0,180]]
    which is the required principal value.
  6. LHS tan1x
    Let tanθ=x
    tan2θ=x
    R.H.S. =12cos1(1tan2θ1+tan2θ)
    =12cos1(cos2θ)=12×2θ=θ
    =tan1x
  7. tan1(tan3π4)
    =tan1(tan4ππ4)
    =tan1[tan(ππ4)]
    =tan1[tanπ4]
    =tan1tan(π4) =π4
  8. 2 tan-1(cos x) = tan-1(2 cosec x)
    tan1(2cosx1cos2x)=tan1(2sinx)
    2cosx1cos2x=2sinx
    cosxsinx=1
     cot x = 1 x=π4
  9. sin1(sin2π3)
    =sin1(sin3ππ3)
    =sin1[sin(ππ3)]
    =sin1sinπ3 =π3
  10. To prove, tan1(1)+tan1(2)+tan1(3)=π
    LHS = tan1(1)+tan1(2)+tan1(3)
    =tan1(tanπ4)+π2cot1(2)+π2cot1(3) [tan1x+cot1x=π2]
    =π4+π[cot1(2)+cot1(3)][tan1(tanθ)=θ;θ(π2,π2)]
    =5π4[tan1(12)+tan1(13)][cot1x=tan11x,x>0]
    =5π4[tan1(12+1311213)][tan1x+tan1y=tan1(x+y1xy), if xy<1]
    =5π4tan1(5/65/6)
    =5π4tan1(1)=5π4π4=4π4=πRHS (Hence Proved)
  11. Here, we have to find the value of x .Now, we are given that
    tan1x2+tan1x3=π4,6>x>0
    tan1(x2+x31x26)=π4[tan1x+tan1y=tan1(x+y1xy);xy<1]
    3x+2x66x26=tanπ4 { taking tan on both sides}
    5x6x2=1[tanπ4=1]
     5x = 6-x2
     x2 + 5x - 6 = 0
     x2 + 6x - x - 6 = 0
     x (x + 6) - 1 (x + 6) = 0
     (x-1) (x + 6) = 0
     x = 1 or - 6
    But it is given that, 6 > x > 0 x > 0
     x = - 6 is rejected.
    Hence, x = 1 is the only solution of the given equation.
  12. tan1[2cos(2sin112)]
    =tan1[2cos(2sin1sinπ6)]
    =tan1[2cos(2×π6)]
    =tan1[2cosπ3]
    =tan1[2×12] = tan-11
    =tan1tanπ4=π4
  13. Let θ = sin-1(1213)
     sinθ = 1213
    1cos2θ=1213
    1cos2θ=(12)2(13)2
    cos2θ=(5)2(13)2
    cosθ=513
    Since, tanθ = sinθcosθ=1213513=125
    θ=tan1(125)
    Thus, θ=sin1(1213)=tan1(125)
    Similarly, cos1(513)=tan1(125)
    We have, LHS = sin1(1213)+cos1(45)+tan1(6316)
    =tan1(125)+tan1(34)+tan1(6316)
    =[tan1(125)+tan1(34)]+tan1(6316)
    {since 125×34=95>1, therefore , tan-1A + tan-1B = π+tan1A+_B1AB)
    =π+tan1(125+341(125)(34))+tan1(6316)
    π+tan1(6316)+tan1(6316)
    =πtan1(6316)+tan1(6316) = π Hence Proved.