Inverse Trigonometric Functions - Exemplar Solutions

 CBSE Class–12 Mathematics

NCERT Exemplar
Chapter - 2
Inverse Trigonometric Functions - 
Short Answer Questions


1. Find the principal value of cos–1x, for .

Sol.If , then .

Since we are considering principal branch, . Also, sincebeing in the first quadrant, hence 

2. Evaluate

Sol. 

=

3. Find the value of

Sol.

4. Find the value of

Sol.

                             

.

5. Evaluate

.

Sol.Since

6. Evaluate:

.

Sol.

7. Evaluate:

.

Sol.

8. Prove that . State with reason whether the equality is valid for all values of x.

Sol.Let 

Or, 

So 

The equality is valid for all values of x since tan–1x and cot–1x are true for x R.

9. Find the value of

Sol.Let

. So, which gives .

Therefore, .

10. Find value of tan (cos–1x) and hence evaluate

Sol.Let then where 

Therefore, 

Hence,

11. Find the value of

Sol.Let

Then .

Now

12. Evaluate

cos[sin114+sec143]

Sol. 


Long Answer Questions


13. Prove that 

Sol.Let

then

where

Thus

Therefore,

14. Prove that 

Sol.We have

=

15. Which is greater, tan 1 or tan–1 1?

Sol.From Fig. we note that tan x is an increasing function in the interval , since This gives

tan 1>1

16. Find the value of

Sol.  Let

and

so that

and

Therefore,

17. Solve for x

Sol.From given equation, we have

18. Find the values of x which satisfy the equation 

Sol.From the given equation, we have

+

19. Solve the equation

Sol.From the given equation, we have

. Squaring, we get

Note that is the only root of the equation as does not satisfy it.

20. Show that

Sol.L.H.S. =

 

Objective Questions

 


Choose the correct answer from the given four options in each of 21 to 41.

21. Which of the following corresponds to the principal value branch of tan–1?

(A) 

(B) 

(C) 

(D) 

Sol.(A) is the correct answer.

22. The principal value branch of sec-1is

(A) 

(B) 

(C) (0, π)

(D) 

Sol.(B) is the correct answer.

23. One branch of cos–1 other than the principal value branch corresponds to

(A) 

(B) 

(C) (0, π)

(D) [2π, 3π]

Sol.(D) is the correct answer.

24. The value of  

 

(A)

(B) 

(C)

(D) 

Sol.(D) is the correct answer. 

25. The principal value of the expression 
 

(A)

(B)

(C)

(D)

Sol.(A) is the correct answer. Cos-1(cos (680°)) = cos-1[cos (720° – 40°)]

26. The value of is

(A) 

(B) 

(C) 

(D) 

Sol.(D) is the correct answer. Let then 

27. If for some then the value of is

(A) 

(B) 

(C) 

(D) 

Sol.(B) is the correct answer. We know . Therefore 

28. The domain of is

(A) [0, 1]

(B) [– 1, 1]

(C) 

(d) 

Sol.(C) is the correct answer. Let so that.

Now , i.e., which gives.

29. The principal value of is

(A) 

(B) 

(C) 

(D) 

Sol.(B) is the correct answer.

30. The greatest and least values of are respectively

(A) 

(B) 

(C) 

(D) 

Sol.(A) is the correct answer. We have

Thus, the least value is and the Greatest value is , i.e.

31. Let , then value of is

(A) 

(B) 

(C) 

(D) 

Sol.(A) is the correct answer.

32. The domain of the function is

(A) [0, 1]

(B) (0, 1)

(C) [–1, 1]

(D) 

Sol.(C) is the correct answer. 

i.e. – 1 ≤– x≤1 (since – 1 ≤sin y ≤1)

33. The domain of is

(A) [3, 5]

(B) [0, π]

(C) 

(D) 

Sol.(D) is the correct answer. 

i.e. 

34. The domain of the function defined by is

(A) [–1, 1]

(B) [–1, π + 1]

(C) 

(D) 

Sol.(A) is the correct answer. The domain of cos is R and the domain of sin–1 is [–1, 1]. Therefore, the domain of i.e. 

35. The value of sin is

(A) .48

(B) .96

(C) 1.2

(D) sin 1.2

Sol.(B) is the correct answer. Let sin-1 (.6) = θ, i.e., sin θ= .6.

Now sin (2θ) = 2 sinθ cosθ= 2 (.6) (.8) = .96.

36. If then value of is

(A) 

(B) π

(C) 0

(D) 

Sol.(A) is the correct answer. Given that 

Therefore, 

37. The value of is

(A) 

(B) 

(C) 

(D) 

Sol.(A) is the correct answer. 

38. The value of the expression is

(A) 0

(B) 1

(C) 

(D) 

Sol.(D) is the correct answer.

39 The equation has

(A) no Solution

(B) unique Solution

(C) infinite number of Solutions

(D) two Solutions

Sol.(B) is the correct answer. We have 

Adding them, we get 

40. If , then

(A) 

(B) 

(C) 

(D) 

Sol.(B) is the correct answer. We have 

41. The value of tan is

(A) 5

(B) 11

(C) 13

(D) 15

Sol.(B) is the correct answer.