Inverse Trigonometric Functions - Revision Notes

 CBSE Class 12 Mathematics

Chapter-02
Inverse Trigonometric Functions


  • The domains and ranges (principal value branches) of inverse trigonometric functions are given in the following table:

Functions

Domain

Range (Principal Value Branches)

[-1, 1]

[-1, 1]

R- [-1, 1]

 - {0}

R-[-1, 1]

R

R

  •  should not be confused with . In fact  And similarly for other trigonometric functions.
  • The value of an inverse trigonometric functions which lies in its principal value branch is called the principal value of that inverse trigonometric functions.
  • For suitable values of domain, we have

• 

• 

• 

• 

• 

• 

• 

• 

• 

cot11x=tan1x

cosec11x=sin1x

• 

sec11x=cos1x

• 

• 

• 

• 

• 

• 

sin1x+sin1y=sin1(x1y2+y1x2)

cos1x+ocos1y=cos1(xy1x21y2)

• 

• 

tan1x+tan1y+tan1z = tan1(x+y+zxyz1xyyzzx)

2sin1x=sin1(2x1x2)

2cos1x=cos1(2x21)

• 2tan1x=sin1(2x1+x2) = cos1(1x21+x2)=tan1(2x1x)

3sin1x=sin1(3x4x3)

3cos1x=cos1(4x33x)

3tan1x=tan1(3xx313x2)

Conversion:

  • sin1x=cos11x2=tan1x1x2=cot11x2x = sec111x2=cosec11x
  • cos1x=sin11x2=tan11x2x=cot1x1x2 = sec11x=cosec111x2
  • tan1x=sin1x1+x2=cos111+x2=sec11+x2 = cosec11+x2x=cot11x
  • cot1x=sin111+x2=cos1x1+x2=sec11xsec11+x2x=cosec11+x2
  • sec1x=tan1x211=cot11x21=sin1x21x = cos11x=cosec1xx21
  • cosec1x=sin11x=tan11x21=cot1x21=sec1xx21=cos1x21x

Some other properties of Inverse Trigonometric Function:

  • tan1xa2x2=sin1xa
  • cot1xa2x2=cos1xa
  • tan1ax2a2=cosec1xa