Three Dimensional Geometry - Revision Notes
CBSE Class 12 Mathematics
Chapter-11
Three Dimensional Geometry
- Direction cosines of a line : Direction cosines of a line are the cosines of the angles made by the line with the positive direct ions of the coordinate axes.
- are the direct ion cosines of a line, then
- Direct ion cosines of a line joining two pointsandare
· where
- Direction ratios of a line are the numbers which are proportional to the direct ion cosines of a line.
- If are the direct ion cosines and are the direct ion ratios of a line
Then, ,,
- Skew lines: Skew lines are lines in space which are neither parallel nor intersecting. They lie in different planes.
- Angle between two skew lines: Angle between skew lines is the angle between two intersecting lines drawn from any point (preferably through the origin) parallel to each of the skew lines.
- If are the direction cosines of two lines; and is the acute angle between the two lines; then,
- Vector equation of a line that passes through the given point whose position vector is and parallel to a given vector
- Equation of a line through a point and having direct ion cosines is
- The vector equation of a line which passes through two points whose position vectors are
- Cartesian equation of a line that passes through two points and is
- If is the acute angle between and then,
- If and are the equations of two lines, then the acute angle between the two lines is given by
- Shortest distance between two skew lines is the line segment perpendicular to both the lines.
- Shortest distance between and is
- Shortest distance between the lines: and is
- Distance between parallel lines and is
- In the vector form, equation of a plane which is at a distance d from the origin, and is the unit vector normal to the plane through the origin is
- Equation of a plane which is at a distance of d from the origin and the direction cosines of the normal to the plane as l, m, n is .
- The equation of a plane through a point whose position vector is a and perpendicular to the vector is .
- Equation of a plane perpendicular to a given line with direction ratios A, B, C and passing through a given point is
- Equation of a plane passing through three non collinear points ,
- Vector equation of a plane that contains three non collinear points having position vectors and is .
- Equation of a plane that cuts the coordinates axes at is .
- Vector equation of a plane that passes through the intersection of planes and is , where is any non-zero constant.
- Cartesian equation of a plane that passes that passes through the intersection of two given planes and is
- Two lines and are coplanar if
- Two planes and are coplanar if
- In the vector form, if is the angle between the two planes, and , then
- The angle between the line and the plane is
- The angle between the planes and is given by
- The distance of a point whose position vector is from the plane is .
- The distance from a point to the plane Ax + By + Cz + D = 0 is
- Equation of any plane that is parallel to a plane that is parallel to a plane Ax + By + Cz + D = 0 is Ax + By + Cz + k = 0, where k is a different constant other than D.