Vector Algebra - Test Papers

CBSE Test Paper 01
Chapter 10 Vector Algebra


  1. Find the angle between two vectors a and b with magnitudes 3 and 2, respectively, having a.b=6.

    1. π5
    2. π3
    3. π2
    4. π4
  2. Find the angle between two vectors i^2j^+3k^and 3i^2j^+k^

    1. cos1(47)
    2. cos1(67)
    3. cos1(59)
    4. cos1(57)
  3. Vector has 

    1. direction
    2. None of these
    3. magnitude
    4. magnitude as well as direction
  4. Find the sum of the vectorsa=i^2j^+k^,b=2i^+4j^+5k^ and c=i^6j^7k^

    1. i^+4j^k^
    2. 4j^k^
    3. i^4j^k^
    4. i^4j^k^
  5. Find the direction cosines of the vector i^+2j^+3k^

    1. 114,214,314
    2. 114,214,314
    3. 114,214,314
    4. 114,214,314
  6. The values of k which |ka|<|a| and ka+12a is parallel to a holds true are ________.
  7. If r.a=0r.b=0, and r.c=0 for some non-zero vector r, then the value of a(b×c) is ________.
  8. The angle between two vectors a and b with magnitudes 3 and 4, respectively, a.b = 23 is ________.
  9. Find a×b if a=2i^+j^+3k^,b=3i^+5j^2k^

  10. Find the projection of a on b, if ab=8 and b=2i^+6j^+3k^. 

  11. a Is unit vector and (xa)(x+a)=8, Then find |x|

  12. Find the position vector of the mid-point of the vector joining the points P (2, 3, 4) and Q(4,1, - 2) 

  13. Find sine of the angle between the vectors. a=2i^j^+3k^,b=i^+3j^+2k^

  14. Find the projection of the vector i^+3j^+7k^ on the vector 7i^j^+8k^ 

  15. Let a=i^+j^+k^,b=4i^2j^+3k^ and c=i^2j^+k^.Find a vector of magnitude 6 units, which is parallel to the vector 2ab+3c.

  16. Let a=i^+4j^+2k^,b=3i^2j^+7k^ and c=2i^j^+4k^ .Find a vector d which is perpendicular to both a and b and c.d=15

  17. A girl walks 4 km towards west, then she walks 3 km in a direction 300 east of north and stops. Determine the girl’s displacement from her initial point of departure.

  18. Find a vector d which is  to both a and b and cd=15 Let a=i^+4j^+2k^,b=3i^2j^+7k^ and c=2i^j^+4k^.

CBSE Test Paper 01
Chapter 10 Vector Algebra


Solution

    1. π4Explanation: |a|=3,|b|=2,a.b=6
      a.b=|a|.|b|cosθ6
      =23cosθ
      cosθ=12θ=π4
    1. cos1(57)Explanation: a=i^2j^+3k^,b=3i^2j^+k^|a|=14,|b|=14,a.b=10
      a.b|a||b|=cosθ1014=cosθ
      cosθ=57θ=cos157
    1. magnitude as well as direction, Explanation: A vector has both magnitude as well as direction.
    1. 4j^k^Explanation: We have: vectors a=i^2j^+k^, b=2i^+4j^+5k^ and 
    1. 114,214,314Explanation: Let a=i^+2j^+3k^,

      Then, a^=a|a|=i^+2j^+3k^12+22+32=i^+2j^+3k^14
      Therefore , the D.C.’s of vector a are :
      114,214,314.

  1.  ]-1, 1 [k  12

  2. 0

  3. π3

  4. a×b=|i^j^k^213352|
    =i^(215)j^(49)+k^(103)
    =17i^+13j^+7k^
  5. We are given that, ab=8 and b=2i^+6j^+3k^
     The projection of a on b is given as = ab|b|
    =822+62+32
    =84+36+9
    =849=87
  6. |a|=1
    (xa).(x+a)=8
    |x|2|a|2=8
    |x|21=8
    |x|2=9
    |x|=3
  7. Given: Point P (2, 3, 4) and Q(4,1, - 2)
     Position vector of point P is a=2i^+3j^+4k^
    And Position vector of point Q is b=4i^+j^2k^
    And Position vector of mid-point R of PQ is a+b2=2i^+3j^+4k^+4i^+j^2k^2
    =6i^+4j^+2k^2=3i^+2j^+k^
  8. a×b=|i^j^k^213132|
    =11i^j^+7k^
    |a×b|=(11)2+(1)2+(7)2
    =171=319
    sinθ=|a×b||a||b|=31914.14=31419
  9. Let a=i^+3j^+7k^ and b=7i^j^+8k^
    Projection of vector a on b=a.b|b|
    =(1)(7)+(3)(1)+7(8)(7)2+(1)2+(8)2
    =73+5649+61+64=60114
  10. According to the question ,
    a=i^+j^+k^,
    b=4i^2j^+3k^ and
    c=i^2j^+k^
    Now ,2ab+3c
    =2(i^+j^+k^)(4i^2j^+3k^)+3(i^2j^+k^)
    =2i^+2j^+2k^4i^+2j^3k^+3i^6j^+3k^
    =i^2j^+2k^
    2ab+3c=i^2j^+2k^
    Now, a unit vector in the direction of vector is 2ab+3c=2ab+3c|2ab+3c|
    =i^2j^+2k^(1)2+(2)2+(2)2
    =i^2j^+2k^9
    =i^2j^+2k^3
    =13i^23j^+23k^
    Vector of magnitude 6 units parallel to the vector is ,
    =6(13i^23j^+23k^)
    =2i^4j^+4k^
  11. Given: Vectors a=i^+4j^+2k^ and b=3i^2j^+7k^
    We know that the cross-product of two vectors, a×b is a vector perpendicular to both a and b
    Hence, vector d which is also perpendicular to both a and b is d=λ(a×b) where λ=1 or some other scalar.
    Therefore, d=λ|ijk142327|
    =λ[i^(28+4)j^(76)+k^(212)]
    d=32λi^λj^14λk^...(i)
    Now given c=2i^j^+4k^ and c.d=15
    c.d=15
    =2(32λ)+(1)(λ)+4(14λ)=15
    64λ+λ56λ=15
    9λ=15
    λ=159
    λ=53
    Putting λ=53 in eq. (i), we get
    d=53[32i^j^14k^]
    d=13[160i^5j^70k^]
  12. Let the initial point of departure is origin (0, 0) and the girl walks a distance OA = 4 km towards west.
    Through the point A, draw a line AQ parallel to a line OP, which is 300 East of North, i.e., in East-North quadrant making an angle of 300 with North.
    Again, let the girl walks a distance AB = 3 km along this direction OQ
    OA=4(i)=4i^ …(i) [ Vector OA is along OX’]

    Now, draw BM perpendicular to x - axis.
    In ΔAMB by Triangle Law of Addition of vectors,
    AB=AM+MB=(AM)i^+(MB)i^
    Dividing and multiplying by AB in R.H.S.,
    AB=ABAMABi^+ABMBABj^ =3cos60oi^+3sin60oj^
    AB=312i^+332i^=32i^+332j …(ii)
     Girl’s displacement from her initial point O of departure to final point B,
    OB=OA+AB =4i^+(32i^+322j^) =(4+32)i^+332j^
    OB=52i^+332j^
  13. a=i^+4j^+2k^,b=3i^2j^+7k^ and c=2i^j^+4k^
    Let d=xi^+yj^+zk^
    ATQ, d.a=0,d.b=0 and c.d=15, then,
    x + 4y + 2z = 0 ...(1)
    3x - 2y + 7z = 0 ...(2)
    2x - y + 4z = 15 ...(3)
    On solving equation (1) and (2)

    x28+4=y67=z212=k
    x = 32k, y = -k, z = -14k
    Put x, y, z in equation (3)
    2(32k) - (-k) + 4(-14k) = 15
    64k + k - 56k = 15
    9k = 15
    k=159
    k=53
    x=32×53=1603
    y=53
    z=14×53=703