Three Dimensional Geometry - Test Papers

 CBSE Test Paper 01

Chapter 11 Three Dimensional Geometry


  1. Write the vector equation of a line that passes through the given point whose position vector is a and parallel to a given vector b .

    1. r=aλb,λR
    2. r=a+λbλR
    3. r=a+λb,λR
    4. r=aλbλR
  2. If a line has the direction ratios – 18, 12, – 4, then what are its direction cosines ?

    1. 911,611,211
    2. 911,611,211
    3. 911,611,211
    4. 711,611,311
  3. In the Cartesian form two lines xx1a1=yy1b1=zz1c1and xx2a2=yy2b2=zz2c2are coplanar if 

    1. |x2x1y2y1z2z1a1b1c1a2b2c2|=0
    2. |x2x1y2y1z2z1a1b1c1a2b2c2|=0
    3. |x2x1y2y1z2z1a1b1c1a2b2c2|=0
    4. |x2x1y2y1z2z1a1b1c1a2b2c2|=0
  4. Express the Cartesian equation of a line that passes through two points(x1, y1, z1) and (x2, y2, z2) . 

    1. x+x1x2x1=yy1y2+y1=zz1z2z1
    2. xx1x2x1=yy1y2y1=z+z1z2z1
    3. xx1x2x1=yy1y2+y1=zz1z2z1
    4. xx1x2x1=yy1y2y1=zz1z2z1
  5. Two lines r=a1+λb1andr=a2+μb2 are coplanar if 

    1. (a2a1).(b1×b2)=0
    2. (a2a1).(b1×b2)=0
    3. (a2a1).(b1×b2)=0
    4. (a2a1).(b1×b2)=0
  6. Direction ratios of two _________ lines are proportional.
  7. If l, m, n are the direction cosines of a line, then l+ m2 + n2 = ________.
  8. The distance of a point P(a, b, c) from x-axis is ________.
  9. Find the vector equation for the line passing through the points (-1,0,2) and (3,4,6). 

  10. Write the vector equation of the plane passing through the point (a, b, c) and parallel to the plane r(i^+j^+k^)=2. 

  11. Write the equation of a plane which is at a distance of 53 units from origin and the normal to which is equally inclined to coordinate axes. 

  12. Find angle between lines x2=y2=z1,x54=y21=z38

  13. The x - coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, -2) is 4. Find its z - coordinate. 

  14. Find the vector and Cartesian equation of the line through the point (5, 2,-4) and which is parallel to the vector 3i^+2j^8k^

  15. Write the vector equations of following lines and hence find the distance between them.
    x12=y23=z+46, x34=y36=z+512

  16. The points A(4, 5,10), B(2, 3,4) and C(1, 2, -1) are three vertices of parallelogram ABCD. Find the vector equations of sides A and BC and also find coordinates of point D. 

  17. Find the shortest distance between the lines whose vector equations are
    r=(1t)i^+(t2)j^+(32t)k^
    r=(s+1)i^+(2s1)j^(2s+1)k^

  18. Find the distance of the point (-1, -5, -10) from the point of intersection of the line r=(2i^j^+2k^)+λ(3i^+4j^+2k^)and the plane r.(i^j^+k^)=5

CBSE Test Paper 01
Chapter 11 Three Dimensional Geometry


Solution

    1. r=a+λbλR
      Explanation: The vector equation of a line that passes through the given point whose position vector isa and parallel to a given vector b is given by : r=a+λb
      λR
      Where, r=xi^+yj^+zk^
      a=a1i^+b1j^+c1k^
      b=a1i^+b1j^+c1k^
    1. 911,611,211
      Explanation: If a line has the direction ratios -18, 12, -4, then its direction cosines are given by:
      l=18(18)2+(12)2+(4)2
      18324+144+16=18484
      =1822=911
      m=12(18)2+(12)2+(4)2
      =12324+144+16=12484
      =1222=611
      n=4(18)2+(12)2+(4)2
      =4324+144+16=4484
      =422=211
    1. |x2x1y2y1z2z1a1b1c1a2b2c2|=0.
      Explanation: In the Cartesian form two lines
      xx1a1=yy1b1=zz1c1
      and
      xx2a2=yy2b2=zz2c2
      are coplanar if
      |x2x1y2y1z2z1a1b1c1a2b2c2|=0
    1. xx1x2x1=yy1y2y1=zz1z2z1
      Explanation: The Cartesian equation of a line that passes through two points (x1, y1, z1) and (x2, y2, z2) is given by : xx1x2x1=yy1y2y1=zz1z2z1
    1. (a2a1).(b1×b2)=0
      Explanation: In vector form: Two lines r=a1+λb1andr=a2+μb2are coplanar if
  1. Parallel
  2. 1
  3. b2+c2
  4. Let a and b be the p.v of the points A (-1,0,2) and B (3, 4, 6)
    r=a+λ(ba)
    =(i^+2k^)+λ(4i^+4j^+4k^)

  5. According to the question, The required plane is passing through the point (a,b,c) whose position vector is p=ai^+bj^+ck^ and is parallel to the plane r(i^+j^+k^)=2
     it is normal to the vector
    n=i^+j^+k^
    Required equation of plane is
    (rp).n=0r.n=p.n
     r.(i^+j^+k^)=(ai^+b^+ck^)(i^+ȷ^+k^)
    r.(i^+j^+k^)=a+b+c

  6. According to the question, the normal to the plane is equally inclined with coordinates axes, and the distance of the plane from origin is 53 units
     the direction cosines are 13,13 and 13
    The required equation of plane is
    13x+13y+13z=53
    x+y+z=5×3
    x+y+z=15
    [ If l, m and n are direction cosines of normal to the plane and P is a distance of a plane from origin, then the equation of plane is given by lx+my+nz=p]

  7. x02=y02=z01
    x54=y21=z38
    a1 = 2, b1 = 2, c1 = 1
    a2 = 4, b2 = 1, c2 = 8
    cosθ=|b1.b2||b1||b2|
    =|2(4)+2(1)+1(8)22+22+142+12+82|
    =|8+2+8981|
    =1827
    =23
    θ=cos1(23)

  8. Let the point P divide QR in the ratio λ:1, then the co-ordinate of P are
    (5λ+2λ+1,λ+2λ+1,2λ+1λ+1)
    But x - coordinate of P is 4. Therefore,
    5λ+2λ+1=4λ=2
    Hence, the z - coordinate of P is 2λ+1λ+1=1.

  9. a=5i^+2j^4k^,b=3i^+2j^8k^
    Vector equation of line is
    r=a+λb
    =5i^+2j^4k^+λ(3i^+2j^8k^)
    Cartesian equation is
    xi^+yj^+zk^=5i^+2j^4k^+λ(3i^+2j^8k^)
    xi^+yj^+zk^=(5+3λ)i^+(2+2λ)j^+(48λ)k^
    x=5+3λ,y=2+2λ,z=48λ
    x53=y22=z+48=λ
    Therefore, required equation is,
    x53=y22=z+48

  10. The given equations of lines are
    x12=y23=z+46
    and x34=y36=z+512
    Now, the vector equation of given lines are
    r=(i^+2j^4k^)+λ(2i^+3j^+6k^)......(i)
    [ vector form of equation of line is r=a+λb]
    and r=(3i+3j^5k^)+μ(4i^+6j^+12k^)...................(ii)
    Here, a1=i^+2j^4k^,b1=2i^+3j^+6k^
    and a2=3i^+3j^5k^,b2=4i^+6j^+12k^
    Now, a2a1=(3i^+3j^5k^)(i^+2j^4k^)
    =2i^+j^k^.................(iii)
    and b1×b2=|i^j^k^2364612|
    =i^(3636)j^(2424)+k^(1212)
    =0i^0^j^+0k^=0
    b1×b2=0,
    i.e. Vector bis parallel to b2
    [ if a×b=0, then ab]
    Thus, two lines are parallel.
    b=(2i^+3j^+6k^)...................(iv)
    [since, DR's of given lines are proportional]
    Since, the two lines are parallel, we use the formula for shortest distance between two parallel lines
    d=|b×(a2a1)|b||
    d=|(2i^+3j^+6k^)×(2i^+j^k^)(2)2+(3)2+(6)2|..............(v)
    [from Eqs. (iii) and (iv) ]
    Now, (2^i+3j^+6k^)×(2i^+j^k^)
    =|i^j^k^236211|
    =i^(36)j^(212)+k^(26)
    =9i^+14j^4k^
    From Eq, (v), we get
    d=|9i^+14j^4k^49|=(9)2+(14)2+(4)27
    d=81+196+167=2937units

  11. The vector equation of a side of a parallelogram, when two points are given, is r=a+λ(ba). Also, the diagonals of a parallelogram intersect each other at mid-point.
    Given points are A (4,5,10), B (2, 3,4) and C(1,2,-1).

    We know that, two point vector form of line is
    given by
    r=a+λ(ba).......................... ......(i)
    where, a and b are the position vector of points through which the line is passing through. Here, for line AB, position vectors are
    a=OA=4i^+5j^+10k^
    and b=OB=2i^+3j^+4k^
    Using Equation. (i), the required equation of line AB is
    r=(4i^+5j^+10k^)+λ[(2i^+3j^+4k^)(4i^+5j^+10k^)]
    r=(4i^+5j^+10k^)+λ(2i^2j^6k^)
    Similarly, vector equation of line BC, where B(2,3,4) and C (1, 2, -1) is
    r=(2i^+3j^+4k^)+μ(i^+2j^k^)(2i^+3j^+4k^)]
    r=(2i^+3j^+4k^)+μ(i^j^5k^)
    We know that, mid-point of diagonal BD
    = Mid-point of diagonal AC
    [ diagonal of a parallelogram bisect each other]
    (x+22,y+32,z+42)=(4+12,5+22,1012)
    Therefore, on comparing corresponding coordinates, we get
    x+22=52,y+32=72 and z+42=92
    x=3,y=4 and z=5
    Therefore, coordinates of point D (x, y, z) is (3,4,5) and vector equations of sides AB and BC are
    r=(4i^+5j^+10k^)λ(2i^+2j^+6k^) and
    r=(2i^+3j^+4k^)μ(i^+j^+ 5k^), respectively.
    r=i^2j^+3k^+t(i^+j^2k^)
    r=i^j^k^+s(i^+2j^2k^)
    a1=i^2j^+3k^
    b1=i^+j^2k^
    a2=i^j^k^
    b2=i^+2j^2k^
    a2a1=j^4k^
    b1×b^2=|i^j^k^112122|

  12. 2i^4j^3k^
    (a2a1)(b1×b2)=(0i+j4k)(2i4j3k)=04+12=8
    |b1×b2|=(2)2+(4)2+(3)2
    =29
    d=|(a2a1)(b1×b2)|b1×b2||=829

  13. r=(2i^j^+3k^)+λ(3i^+4j^+2k^)
    x23=y+14=z22=λ ...(1)
    Any point on line (1) is,
    P(3λ+2,4λ1,2λ+2)
    Now, r.(i^j^+k^)=5
    (xi^+yj^+zk^).(i^j^+k^)=5
    xy+z=5 ...(2)
    Since point P lies on (2), therefore, from (2), we have,
    (3λ+2)(4λ1)+(2λ+2)=5
    λ+5=5
    λ=0
    We get (2, -1, 2)
    as the coordinate of the point of intersection of the given line and the plane
    Now distance between the points (-1, -5, -10) and (2, -1, 2)
    req. distance =(2+1)2+(1+5)2+(2+10)2
    9+16+144=13